SWUpdate: is it possible to combine both the A + Rescue and A + B Strategies? - embedded-linux

I'm familiar with both the A + Rescue and A + B (Dual Copy) strategies supported by SWUpdate for embedded software updates. Both strategies have their advantages and disadvantages.
One key disadvantage of the A + B strategy is that an update can still be successfully installed that is unable (due to a bug) to update again. In this case, the update may be marked "successful", but a future attempt to update will fail. This is a classic case of software update implementations "lagging" one update behind, and although it is likely to be a rare occurrence (especially with good pre-release testing), it is still possible, and when it happens, it can essentially "brick" a deployed device.
A key advantage of the A + Rescue approach is that a "golden image" can be deployed as the Rescue set, and all releases can be tested against this. Therefore confidence that a Rescue update will complete successfully can be very high.
(Aside, this also significantly reduces the test space since only one transition - Rescue -> newer software - per released version needs to be tested. The A + B strategy could result in a much larger number of test cases due to the combinations of previous -> newer software possible).
With these considerations in mind, I'm curious if anyone has attempted to combine both of these into an "A + B + Rescue" strategy, where the usual A + B strategy is followed, but there's provision for the user to manually initiate a fall-back into the Rescue boot state so that one (or both) of the A / B sets can easily be updated to a working version?
Does the design of SWUpdate allow for such a hybrid approach?
EDIT: the SWUpdate documentation here does illustrate the scenario I've described.

Related

Why does ZeroMQ recommend creating one Context for an application?

I've read the part of the guide that recommends creating one Context. My previous implementation of my application had multiple contexts that I created ad-hoc to get a subscription running. I've since changed it to using a single context for all subscriptions.
What are the drawbacks of creating multiple contexts and what use cases are there for doing so? The guide has this following blurb:
Getting the Context Right
ZeroMQ applications always start by creating a context, and then using that for creating sockets. In C, it’s the zmq_ctx_new() call. You should create and use exactly one context in your process. Technically, the context is the container for all sockets in a single process, and acts as the transport for inproc sockets, which are the fastest way to connect threads in one process. If at runtime a process has two contexts, these are like separate ZeroMQ instances. If that’s explicitly what you want, OK, but otherwise remember
Does this mean that it's just not as efficient to use multiple contexts, but it would still work?
Q : "What are the drawbacks of creating multiple contexts ... ?"
Resources consumed. Nothing else. The more Context()-instances one produces, the more memory-allocated & the more overhead-time was spent on doing that.
One-time add-on costs may represent a drawback - some people forget about the Amdahl's Law (and forget to account for setup & termination add-on costs there) where small amounts of "useful"-work may start to be expensive right due to the (for some, ... it may surprise how often & how many ... hidden) add-on costs in attempts to distribute/parallelise some part of the application workloads, yet need not bother you, if not entering low-latency or ultra-low latency domains. Run-time add-on overheads ( to maintain each of the Context()-instances internal work - yes, it works in the background, so it consumes some CPU-clocks even when doing nothing ) may start doing troubles, when numbers of semi-persistent instances grow higher ( also depends on CPU-microarchitecture & O/S & soft-real-time needs, if present )
Q : "What ... use cases are there for doing so?"
When good software architect designs the code for ultimate performance and tries to shave-off the last few nanoseconds, there we go.
Using well thought & smart-crafted specialised-Context()-engines, the resulting ZeroMQ performance may grow to almost the CPU/memory-I/O based limits. One may like to read more on relative-prioritisation, CPU-core-mappings and other high-performance tricks on doing this, in my evangelisations of ZeroMQ design-principles.
Q : "Does this mean that it's just not as efficient to use multiple contexts, but it would still work?"
The part "it would still work" is easier - it would, if not violating the O/S maximum number of threads permitted and if there is still RAM available to store the actual flow of the messages intended for out-of-platform delivery, which uses additional, O/S-specific, buffers - yes, additional SpaceDOMAIN and TimeDOMAIN add-on latency & latency jitter costs start to appear in doing that.
The Zero-Copy inproc:// TransportClass is capable of actually doing a pure in-memory flag-signalling of memory-mapped Zero-Copy message-data, that never moves. In specific cases, there can be zero-I/O-threads Context()-instances for such inproc://-only low-latency data-"flow" models, as the data is Zero-Copied and never "flow" ;o) ).
Q : "Why does ZeroMQ recommend..."
Well, this seems to be a part of the initial Pieter HINTJENS' & Martin SUSRIK's evangelisation of Zero-Sharing, Zero-blocking designs. That was an almost devilish anti-pattern to the Herd of Nerds, who lock/unlock "shared" resources and were suddenly put to a straight opposite ZeroMQ philosophy of designing smart behaviours (without a need to see under the hood).
The art of the Zen-of-Zero - never share, never block, never copy (if not in a need to do so) was astoundingly astonishing to Nerds, who could not initially realise the advantages thereof (as they were for decades typing in code that was hard to read, hard to rewrite, hard to debug, right due to the heaps of sharing-, locking- and blocking-introduced sections and that they/we were "proud-off" to be the Nerds, who "can", where not all our colleagues were able to decode/understand the less improve).
The "central", able to be globally shared Context()-instance was a sign of light for those, who started to read, learn and use the new paradigm.
After 12+ years this may seem arcane, yet the art of the Zen-of-Zero started with this pain (and a risk of an industry-wide "cultural", not a technical, rejection).
Until today, this was a brave step from both Pieter HINTJENS & Martin SUSTRIK.
Ultimate ~Respect!~ to the whole work they together undertook... for our learning their insights & chances to re-use them in BAU... without an eye-blink.
Great minds.

Having one code base for multiple regions and clients

Context:
We built a data-intensive app for US region for just one client using ASP.NET MVC and now we are slowly moving to ASP NET Core. we have a requirement to develop similar version for Canada, our approach was to maintain two different code bases even though the UI is 70% same.
Problem:
Two code bases seems maintainable but were ending up doing double work if a generic component has to changed. Now we have multiple clients coming from multiple regions and UI can be a little different by client and region and we are bit confused on how to architect the such an app with just once code base.
I am not sure on what would be a maintainable and scalable approach.
One approach is having an UI powered by rules engine that is capable of showing and hiding the components. How maintainable is this approach in deployments perspective?
what would be other approaches to solve this problem?
The main approaches I can think of are:
Separate code bases and release pipelines. This seems to be your current approach.
Pros:
independent releases - no surprises like releasing a change to Canada which the other team made for US
potentially simpler code base - less configuration, fewer "if (region == 'CANADA')..."
independent QA - it's much simpler to automate testing if you're just testing one environment
Cons:
effort duplication as you've already noticed
One code base, changes configuration driven.
Pros:
making a change in one place
Cons:
higher chance on many devs working on the same code at the same time
you're likely to end up with horrible 'ifs'
separating release pipelines can be very tricky. If you have a change for Canada, you need to test everything for US - this can be a significant amount of effort depending on the level of QA automation and the complexity of your test scenarios. Also, do you release US just because someone in Canada wanted to change the button color to green? If you do then you waste time. If you don't then potentially untested changes pile up for the next US release.
if you have other regions coming, this code quickly becomes complex - many people just throw stuff in to make their region work and you end up with spaghetti code.
Separate code bases using common, configurable modules.
This could contain anything you decide is unlikely to differ across regions: Nuget packages with core logic, npm packages with javascript, front end styling, etc.
Pros:
if done right you can get the best of both worlds - separate release pipelines and separate (simple) region specific code
you can make a change to the common module and decide when/if to update each region to the newest version separately
Cons:
more infrastructure effort - you need a release pipeline per app and one per each package
debugging and understanding packaged code when used in an app is tricky
changing something in common module and testing it in your app is a pain - you have to go to the common repository, make a change, test it, create a PR, merge it, wait for the package to build and get released, upgrade in your app... and then you discover the change was wrong.
I've worked with such projects and there are always problems - if you make it super configurable it becomes unreadable and overengineered. If you make it separated you have to make changes in many places and maintaining things like unit tests in many places is a nightmare.
Since you already started with approach 1 and since you mentioned other regions are coming, I'd suggest going with your current strategy and slowly abstracting common pieces to separate repos (moving towards 3rd approach).
I think the most important piece that will make such changes easier is a decent level of test automation - both for your apps and for your common modules when you create them.
One piece of advice I can give you is to be pragmatic. Some level of duplication is fine, especially if the alternative is a complex rule engine that no one understands and no one wants to touch because it's used everywhere.

A C++11 based signals/slots with ordering

I may be a bit in over my head here, but if you never try new things - you'll never learn I suppose. I'm working with some multi-touch stuff and have built myself a small but functional GUI library. Up until now I've been used boosts Signals2 library to have my detected gestures be distributed to all active GUI elements (whether on screen or not). I'm a big fan of avoiding pre-mature optimization, so things have been honky-dory until now.
I've used vs2013's profiler to find out that when the user goes touch crazy (the device supports up to 41 simultaneous touches), then my system grinds to a halt, and Signals2 is the culprit. Keep in mind that each touch can trigger a number of Gestures which are all communicated to every GUI element that have registered to interact with this type of Gesture.
Now there are a number of ways to deal with this bottleneck:
Have GUI elements work more cleverly and disconnect them when they're off-screen.
Optimize the signals/slots system so the calls are resolved faster.
Prioritization of events.
I'm not a big fan of ever having to deal with 3 - if avoidable - as it'll directly impact the responsiveness of my application. Nr. 1 should probably be implemented, but I'm more interested in getting to Nr. 2 first.
I don't really need any big fancy stuff. The Signals/Slots system I'd need really only needs to do the core emission stuff along with these 2 feature:
Slots must be able to return a value ending the emission - effectively cancelling any subsequent handling of a signal.
Slots must be order-able - and fairly efficient at this. GUI elements that are interacted with will pop-up above others, so this type of change in order is bound to happen quite often.
I stumbled across this really interesting implementation
https://testbit.eu/2013/cpp11-signal-system-performance/
which seems to have everything except the 'ordering' I need. I've only looked over the code once, and it does seem a little intimidating. If I were to try and add ordering capabilities, I'd prefer not to change too much stuff around if necessary. Does anyone have experience with this stuff? I'm fairly certain that a linked list is not optimal for constant removal and insertion, but then again, it probably needs to be optimized the most for constant emission calls.
Any thoughts are most welcome!
--- Update ---
I've spend a little time adding the features I needed to the code put into the public domain above and pasted the complete (and somewhat hacky version) here:
SimpleSignal with added features
In short, I've added:
Blockable Connections (Implemented via simple IF statement)
Depth/Order parameter (Linear-search insertion)
With those additions, keep in mind it has these current issues:
Blocked connections are simply skipped, not actively removed from the data-structure, so having a lot of blocked connections will affect run-time performance.
Depth is only maintained during insertion. So if you'd like to change the depth you'll have to disconnect and reconnect your slot.
Since the SignalLink interface has become exposed (as a result of my block implementation), it's less safe from a user perspective. It's way easier for you to shoot yourself in the foot with this version by messing with existing references and pointers.
This implementation hasn't been as thoroughly tested as the original I'm sure. I did try out the new functionality a bit. User beware.

Preventing performance regressions in R

What is a good workflow for detecting performance regressions in R packages? Ideally, I'm looking for something that integrates with R CMD check that alerts me when I have introduced a significant performance regression in my code.
What is a good workflow in general? What other languages provide good tools? Is it something that can be built on top unit testing, or that is usually done separately?
This is a very challenging question, and one that I'm frequently dealing with, as I swap out different code in a package to speed things up. Sometimes a performance regression comes along with a change in algorithms or implementation, but it may also arise due to changes in the data structures used.
What is a good workflow for detecting performance regressions in R packages?
In my case, I tend to have very specific use cases that I'm trying to speed up, with different fixed data sets. As Spacedman wrote, it's important to have a fixed computing system, but that's almost infeasible: sometimes a shared computer may have other processes that slow things down 10-20%, even when it looks quite idle.
My steps:
Standardize the platform (e.g. one or a few machines, a particular virtual machine, or a virtual machine + specific infrastructure, a la Amazon's EC2 instance types).
Standardize the data set that will be used for speed testing.
Create scripts and fixed intermediate data output (i.e. saved to .rdat files) that involve very minimal data transformations. My focus is on some kind of modeling, rather than data manipulation or transformation. This means that I want to give exactly the same block of data to the modeling functions. If, however, data transformation is the goal, then be sure that the pre-transformed/manipulated data is as close as possible to standard across tests of different versions of the package. (See this question for examples of memoization, cacheing, etc., that can be used to standardize or speed up non-focal computations. It references several packages by the OP.)
Repeat tests multiple times.
Scale the results relative to fixed benchmarks, e.g. the time to perform a linear regression, to sort a matrix, etc. This can allow for "local" or transient variations in infrastructure, such as may be due to I/O, the memory system, dependent packages, etc.
Examine the profiling output as vigorously as possible (see this question for some insights, also referencing tools from the OP).
Ideally, I'm looking for something that integrates with R CMD check that alerts me when I have introduced a significant performance regression in my code.
Unfortunately, I don't have an answer for this.
What is a good workflow in general?
For me, it's quite similar to general dynamic code testing: is the output (execution time in this case) reproducible, optimal, and transparent? Transparency comes from understanding what affects the overall time. This is where Mike Dunlavey's suggestions are important, but I prefer to go further, with a line profiler.
Regarding a line profiler, see my previous question, which refers to options in Python and Matlab for other examples. It's most important to examine clock time, but also very important to track memory allocation, number of times the line is executed, and call stack depth.
What other languages provide good tools?
Almost all other languages have better tools. :) Interpreted languages like Python and Matlab have the good & possibly familiar examples of tools that can be adapted for this purpose. Although dynamic analysis is very important, static analysis can help identify where there may be some serious problems. Matlab has a great static analyzer that can report when objects (e.g. vectors, matrices) are growing inside of loops, for instance. It is terrible to find this only via dynamic analysis - you've already wasted execution time to discover something like this, and it's not always discernible if your execution context is pretty simple (e.g. just a few iterations, or small objects).
As far as language-agnostic methods, you can look at:
Valgrind & cachegrind
Monitoring of disk I/O, dirty buffers, etc.
Monitoring of RAM (Cachegrind is helpful, but you could just monitor RAM allocation, and lots of details about RAM usage)
Usage of multiple cores
Is it something that can be built on top unit testing, or that is usually done separately?
This is hard to answer. For static analysis, it can occur before unit testing. For dynamic analysis, one may want to add more tests. Think of it as sequential design (i.e. from an experimental design framework): if the execution costs appear to be, within some statistical allowances for variation, the same, then no further tests are needed. If, however, method B seems to have an average execution cost greater than method A, then one should perform more intensive tests.
Update 1: If I may be so bold, there's another question that I'd recommend including, which is: "What are some gotchas in comparing the execution time of two versions of a package?" This is analogous to assuming that two programs that implement the same algorithm should have the same intermediate objects. That's not exactly true (see this question - not that I'm promoting my own questions, here - it's just hard work to make things better and faster...leading to multiple SO questions on this topic :)). In a similar way, two executions of the same code can differ in time consumed due to factors other than the implementation.
So, some gotchas that can occur, either within the same language or across languages, within the same execution instance or across "identical" instances, which can affect runtime:
Garbage collection - different implementations or languages can hit garbage collection under different circumstances. This can make two executions appear different, though it can be very dependent on context, parameters, data sets, etc. The GC-obsessive execution will look slower.
Cacheing at the level of the disk, motherboard (e.g. L1, L2, L3 caches), or other levels (e.g. memoization). Often, the first execution will pay a penalty.
Dynamic voltage scaling - This one sucks. When there is a problem, this may be one of the hardest beasties to find, since it can go away quickly. It looks like cacheing, but it isn't.
Any job priority manager that you don't know about.
One method uses multiple cores or does some clever stuff about how work is parceled among cores or CPUs. For instance, getting a process locked to a core can be useful in some scenarios. One execution of an R package may be luckier in this regard, another package may be very clever...
Unused variables, excessive data transfer, dirty caches, unflushed buffers, ... the list goes on.
The key result is: Ideally, how should we test for differences in expected values, subject to the randomness created due to order effects? Well, pretty simple: go back to experimental design. :)
When the empirical differences in execution times are different from the "expected" differences, it's great to have enabled additional system and execution monitoring so that we don't have to re-run the experiments until we're blue in the face.
The only way to do anything here is to make some assumptions. So let us assume an unchanged machine, or else require a 'recalibration'.
Then use a unit-test alike framework, and treat 'has to be done in X units of time' as just yet another testing criterion to be fulfilled. In other words, do something like
stopifnot( timingOf( someExpression ) < savedValue plus fudge)
so we would have to associate prior timings with given expressions. Equality-testing comparisons from any one of the three existing unit testing packages could be used as well.
Nothing that Hadley couldn't handle so I think we can almost expect a new package timr after the next long academic break :). Of course, this has to be either be optional because on a "unknown" machine (think: CRAN testing the package) we have no reference point, or else the fudge factor has to "go to 11" to automatically accept on a new machine.
A recent change announced on the R-devel feed could give a crude measure for this.
CHANGES IN R-devel UTILITIES
‘R CMD check’ can optionally report timings on various parts of the check: this is controlled by environment variables documented in ‘Writing R Extensions’.
See http://developer.r-project.org/blosxom.cgi/R-devel/2011/12/13#n2011-12-13
The overall time spent running the tests could be checked and compared to previous values. Of course, adding new tests will increase the time, but dramatic performance regressions could still be seen, albeit manually.
This is not as fine grained as timing support within individual test suites, but it also does not depend on any one specific test suite.

Which are the advantages of splitting the developer's time between two projects? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 3 years ago.
Improve this question
I have two projects, with identical priorities and work hours demand, and a single developer. Two possible approaches:
Deliver one project first.
Split the developer's time and deliver both later.
I can't see any reason why people would choose the second approach. But they do. Can you explain me why?
It seems to me that this decision often comes down to office politics. One business group doesn't want to feel any less important than another, especially with identical priorities set at the top. Regardless as to how many different ways you explain why doing both at the same time is a bad idea, it seems as though the politics get in the way.
To get the best product to the users, you need to prevent developer thrashing. When the developers are thrashing, the risk of defects and length of delivery times begin to increase exponentially.
Also, if you can put your business hat on, you can try to explain to them that right now, nobody is getting any value from what the completed products will deliver. It makes more sense for the business to get the best ROI product out the door first to begin recouping the investment ASAP, while the other project will start as soon as the first is finished.
Sometimes you need to just step away from the code you have been writing for 11 hours in order to stay maximally productive. After you have been staring at the minutiae of a system you have been implementing for a long time it can become difficult to see the forest for the trees, and that is when you start to make mistakes that are hard to un-make.
I think it is best to have 2-3 current projects; one main one and 1-2 other projects that aren't on such a strict timeline.
If both projects have the same priority for the company, one obvious reason is for project managers to give higher management the illusion that both of the projects are taken care of.
Consider that the two projects could belong to different customers (or be requested by different people from higher management).
No customer wants to be told to wait while a different customer's project is given priority.
"We'll leave the other one for later" is, a lot of times, not an acceptable answer, even though this leads to delays for both projects.
I believe this is related to the notion of "Perceived Responsiveness" in a software program. Even if something takes more time to do, it looks faster when it appears to be doing something, instead of idly waiting for some other stuff to complete.
It depends on the dependencies involved. If you have another dependency upon the project that can be fulfilled when the project is not 100% complete, then it may make sense to split the developer's time. For example, if your task is large, it may make sense to have the primary developer do a design, then move on to a second task while a teammember reviews the design the primary developer came up with.
Furthermore, deserializing developers from a single task can help to alleviate boredom. Yes, there is potentially significant loss in the context switch, but if it helps keep the dev sharp, it's worth it.
if you go by whats in the great and holy book 'peopleware', you should keep your programmer on one project at a time.
the main reason for this is that divided attention will reduce productivity.
unfortunately, because so many operational managements are good businessman rather then good managers, they may think that multitasking or working on both projects somehow means more things are getting done (which is impossible, a person can only physically exists in one stream of the space-time continuum at one time).
hope that helps :)
LM
I think the number 1 reason from a management standpoint is for perceived progress. If you work on more than one project at the same time stakeholders are able to see progress immediately. If you hold one project off then the stakeholders of that project may not like that nothing is being worked on.
Working on more than 1 project also minimizes risks somewhat. For example if you work on one project first and that project takes longer than expected you could run into issues with the second project. Stakeholder also most likely want their project done now. Holding one off due to another project can make them reconsider going ahead with the project.
Depending on what the projects are you might be able to leverage work done in one for the other. If they are similar then doing both at the same time could be of benefit. If you do them in sequence only the subsequent projects can benefit from the previous ones.
Most often projects are not a constant stream of work. Sometimes developers are busy and sometimes not. If you only work on 1 project at a time a developer and other team members would likely be doing nothing while the more 'administrative' tasks are taking place. Managing the time over more than one project allows teams to get more done in a shorter timeframe.
As a developer I prefer working on multiple projects as long as the timelines are reasonable. As long as I'm not being asked to do both at the same time with no change in the schedule I am fine. Often if I'm stuck on one project I can work on the other. It depends on the projects though.
I'd personally prefer the former but management might want to see progress in both projects. You might also recognise inaccurate estimates earlier if you are doing some work on both, enabling you to inform the customer earlier.
So from a development perspective 1 is the best option but from a customer service point of view 2 is probably better.
It's managing your clients expectations; if you can tell both clients you are working on their project but it will take a little longer due to other projects then to say we are putting your project off till we finish this other project the client is going to jump ship and find someone that can start working on their project now.
It's a plaecbo effect - splitting a developer between two projects in the manner you've described gives people/"the business" the impression that work is being completed on both projects (at the same rate/cost/time), whilst in reality it's probably a lot more inefficient, since context switching and other considerations carries a cost (in time and effort).
On one hand, it can get the ball rolling on things like requirement clarifications and similar tasks (so the developer can switch to the alternate project when they are blocked) and it can also lead to early input from other business units/stakeholders etc.
Ultimately though, if you have one resource then you have a natural bottleneck.
The best thing you can do for that lone developer is to intercept people( from distracting that person), and try to carry some of the burdon around requirements, chasing clarifications and handling user feedback etc.
The only time I'd ever purposely pull a developer off their main project is if they would be an asset to the second project, and the second project was stalled for some reason. If allowing a developer to split a portion of their time could help jump-start a stalled project, I'd do that. This has happened to me with "expert" developers - the ones who have a lot more experience/specialized skills/etc.
That being said, I would try to keep the developer on two projects for as little time as possible, and bring them back to their "main" project. I prefer to allow people to focus on one task at a time. I feel that my job as a manager is to balance and shift people's priorities and focus - and developers should just develop as much as possible.
There are three real-life advantages of splitting developers' time between projects that cannot be ignored:
Specialisation: doing or consulting on work that requires similar specialised knowledge in both projects.
Consistency and knowledge sharing: bringing consistency into the way two separate products are built and work, spreading knowledge accross the company.
Better team utilisation: on a rare occasion when one of the projects is temporarily on hold waiting for some further input.
Splitting time between several projects is beneficial when it does not involve a significant change in context.
Having a developer to work single-handedly on multiple software development projects negates the benefit of specialisation (there isn't any in the case), consistency and knowledge sharing.
It leaves just the advantage of time utilisation, however if contexts differ significantly and there is no considerable overlap between projects the overhead of switching will very likely exceed any time saved.
Context switching is a very interesting beast: contrary to its name implying a discreet change the process is always gradual. There are various degrees of having context information in one’s head: 10% context (shallow), 90% (deep). It takes less time to shallow-switch as opposed to fully-switch; however there is a direct correlation between the amount of context loaded (concentration on the task) and output quality.
It’s possible to fill your time entirely working on multiple distinct projects relying on shallow-switching (to reduce the lead time), but the output quality will inevitably suffer. At some point it’s not only “non-functional” aspects of quality (system security, usability, performance) that will degrade, but also functional (system failing to accomplish its job, functional failures).
By splitting the time between two projects, you can reduce the risk of delaying one project because of another.
Let's assume the estimate for both projects is 3 months each. By doing it serially, one after the other, you should be able to deliver the first project after 3 months, the second project 3 months later (i.e. after 6 months). But, as things go in software development, chances are that the first project encounters some problems so it takes 12 months instead. Or, even worse, goes into the "in use, but never quite finished" purgatory. The second project starts late or even never!
By splitting resources, you avoid this problem. If everything goes well with the second project, you are able to deliver it after 6 months, no matter how well the first project does.
The real life situations where working on multiple projects can be an advantage is in the case where the spec is unclear (every time) and the customer is often unavailable for clarification. In those cases you can just switch to the other project.
This will cause some task switching and should be avoided in a perfect world, but then again...
This is basically my professional life in a nutshell :-)

Resources