I have a shapefile (defined as data) with a column named "pln_area" that defines the geographical units (something like census tract in the U.S. or Canada). I am trying to generate choropleth maps based on another column named "LSTR" (using FisherJenks classification algorithm) for each of my geographical units, which are 55 in total. However, my code only produces maps for the first two (in alphabetic order) and I cannot figure out why!
You can find the shapefile I am trying to run the code on from the following link: https://drive.google.com/drive/folders/1XtxY0T0s7d3Af3XDQ1mRI5KYacEvULwr?usp=sharing
use = data.pln_area.unique()
for pln_area in use:
cgdf = data[data.pln_area==pln_area]
f, ax = plt.subplots(1, figsize=(12, 8))
cgdf.plot(column="LSTR", k=5, scheme="FisherJenks", ax=ax,
edgecolor='grey', legend=True, cmap="Blues", alpha=0.6)
plt.title(f'{pln_area}')
ax.set_axis_off()
plt.show()
Related
Given a dataset of blood results, say cholesterol level, and knowing that the instrument that produced those results is subject to a known degree of variability, how would I add that variability back into the dataset? i.e. I want to assume the result in the original dataset is the true/mean value, and then produce new results that are subject to the known variability of the instrument.
In Excel you use =NORM.INV(RAND(), mean, std_dev), where RAND() provides a random value between 0 and 1, "mean" will be the original value and I have the CV so I can calculate the SD. NORM.INV then provides the inverse of the cumulative normal distribution function.
I've done the following to create a new column with my new values, but would like to know if it is valid (i.e., will each row have a different random number between 0 and 1 as the probability? and is this formula equivalent to NORM.INV?
df8000['HDL_1'] = norm.ppf(random(), loc = df8000['HDL_0'], scale = TAE_df.loc[0,'HDL'])
Thanks in advance!
I'm running the following using the huggingface implementation:
t1 = "My example sentence is really great."
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103")
encoded_input = tokenizer(t1, return_tensors='pt', add_space_before_punct_symbol=True)
output = model(**encoded_input)
tmp = output[0].detach().numpy()
print(tmp.shape)
>>> (1, 7, 267735)
With the goal of getting output embeddings that I'll use downstream.
The last dimension is /substantially/ larger than I expected, and it looks like it is the size of the entire vocab_size rather than a reduction based on the ECL from the paper (which potentially I am misinterpreting).
What argument would I provide the model to reduce this layer size to a smaller dimensional space, something more like the basic BERT at 400 or 768 and still obtain good performance based on the pretrained embeddings?
That's because you used ...LMHeadModel, which predicts the next token. You can use TransfoXLModel.from_pretrained("transfo-xl-wt103") instead, then output[0] is the last hidden state which has the shape (batch_size, sequence_length, hidden_size).
Is there a way to get the topic distribution of an unseen document using a pretrained LDA model without using the LDA_Model[unseenDoc] syntax? I am trying to implement my LDA model into a web application, and if there was a way to use matrix multiplication to get a similar result then I could use the model in javascript.
For example, I tried the following:
import numpy as np
import gensim
from gensim.corpora import Dictionary
from gensim import models
import nltk
from nltk.stem import WordNetLemmatizer, SnowballStemmer
nltk.download('wordnet')
def Preprocesser(text_list):
smallestWordSize = 3
processedList = []
for token in gensim.utils.simple_preprocess(text_list):
if token not in gensim.parsing.preprocessing.STOPWORDS and len(token) > smallestWordSize:
processedList.append(StemmAndLemmatize(token))
return processedList
lda_model = models.LdaModel.load('LDAModel\GoldModel') #Load pretrained LDA model
dictionary = Dictionary.load("ModelTrain\ManDict") #Load dictionary model was trained on
#Sample Unseen Doc to Analyze
doc = "I am going to write a string about how I can't get my task executor \
to travel properly. I am trying to use the \
AGV navigator, but it doesn't seem to be working network. I have been trying\
to use the AGV Process flow but that isn't working either speed\
trailer offset I am now going to change this so I can see how fast it runs"
termTopicMatrix = lda_model.get_topics() #Get Term-topic Matrix from pretrained LDA model
cleanDoc = Preprocesser(doc) #Tokenize, lemmatize, clean and stem words
bowDoc = dictionary.doc2bow(cleanDoc) #Create bow using dictionary
dictSize = len(termTopicMatrix[0]) #Get length of terms in dictionary
fullDict = np.zeros(dictSize) #Initialize array which is length of dictionary size
First = [first[0] for first in bowDoc] #Get index of terms in bag of words
Second = [second[1] for second in bowDoc] #Get frequency of term in bag of words
fullDict[First] = Second #Add word frequency to full dictionary
print('Matrix Multiplication: \n', np.dot(termTopicMatrix,fullDict))
print('Conventional Syntax: \n', lda_model[bowDoc])
Output:
Matrix Multiplication:
[0.0283254 0.01574513 0.03669142 0.01671816 0.03742738 0.01989461
0.01558603 0.0370233 0.04648389 0.02887623 0.00776652 0.02147539
0.10045133 0.01084273 0.01229849 0.00743788 0.03747379 0.00345913
0.03086953 0.00628912 0.29406082 0.10656977 0.00618827 0.00406316
0.08775404 0.00785408 0.02722744 0.09957815 0.01669402 0.00744392
0.31177135 0.03063149 0.07211428 0.01192056 0.03228589]
Conventional Syntax:
[(0, 0.070313625), (2, 0.056414187), (18, 0.2016589), (20, 0.46500313), (24, 0.1589748)]
In the pretrained model there are 35 topics and 1155 words.
In the "Conventional Syntax" output, the first element of each tuple is the index of the topic and the second element is the probability of the topic. In the "Matrix Multiplication" version, the probability is the index and the value is the probability. Clearly the two don't match up.
For example, the lda_model[unseenDoc] shows that topic 0 has a 0.07 probability, but the matrix multiplication method says that topic has a 0.028 probability. Am I missing a step here?
You can review the full source code used by LDAModel's get_document_topics() method in your installation, or online at:
https://github.com/RaRe-Technologies/gensim/blob/e75f6c8e8d1dee0786b1b2cd5ef60da2e290f489/gensim/models/ldamodel.py#L1283
(It also makes use of the inference() method in the same file.)
It's doing a lot more scaling/normalization/clipping than your code, which is likely the cause of the discrepancy. But you should be able to examine, line-by-line, where your process & its differ to get the steps to match up.
It also shouldn't be hard to use the gensim code's steps as guidance for creating parallel Javascript code that, given the right parts of the model's state, can reproduce its results.
I am new to ML and TensorFlow. I am trying to build a CNN to categorize a good image against corrupted images, similar to rock paper scissor tutorials in tensor flow, except for only two categories.
The Colab Notebook
Model Architecture
train_generator = training_datagen.flow_from_directory(
TRAINING_DIR,
target_size=(150,150),
class_mode='categorical'
)
validation_generator = validation_datagen.flow_from_directory(
VALIDATION_DIR,
target_size=(150,150),
class_mode='categorical'
)
model = tf.keras.models.Sequential([
# Note the input shape is the desired size of the image 150x150 with 3 bytes color
# This is the first convolution
tf.keras.layers.Conv2D(64, (3,3), activation='relu', input_shape=(150, 150, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
# The second convolution
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# The third convolution
tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# The fourth convolution
tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# Flatten the results to feed into a DNN
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(0.5),
# 512 neuron hidden layer
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(2, activation='softmax')
])
model.summary()
model.compile(loss = 'categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
history = model.fit_generator(train_generator, epochs=25, validation_data = validation_generator, verbose = 1)
model.save("rps.h5")
Only Change I made was turning input shape to (150,150,1) to (150,150,3) and changed last layers output to 2 neurons from 3. The training gave me consistently accuracy of 90 above for data set of 600 images in each class. But when I am making a prediction using code in the tutorial, it gives me highly wrong values even for data in the data set.
PREDICTION
Original code in TensorFlow tutorial
for file in onlyfiles:
path = fn
img = image.load_img(path, target_size=(150, 150,3)) # changed target_size to (150, 150,3)) from (150,150 )
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
classes = model.predict(images, batch_size=10)
print(fn)
print(classes)
I changed target_size to (150, 150,3)) from (150,150) in my belief that since my input is a 3 channel image,
Result
It gives very wrong values [0,1][0,1] for even images in which are in dataset
But when I changed the code to this
for file in onlyfiles:
path = fn
img = image.load_img(path, target_size=(150, 150,3))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x /= 255.
classes = model.predict(images, batch_size=10)
print(fn)
print(classes)
In this case values come like
[[9.9999774e-01 2.2242968e-06]]
[[9.9999785e-01 2.1864464e-06]]
[[9.9999785e-01 2.1641024e-06]]
one or two errors are there but it is very much correct
So my question even though the last activation is softmax, why it is now coming in decimal values, is there any logical mistake in the way I am making predictions.? I tried binary also, but couldn't find much difference.
Please note -
When you are changing output classes from 2 to 3, you are asking the model to categorise into 3 classes. This would contradict your problem statement which separates good and corrupted ones i.e 2 output classes (a binary problem). I think it can be reversed from 3 to 2 if I have understood the question correctly.
Second the output you are getting is perfectly correct, the neural network models outputs probabilities instead of absolute class values like 0 or 1. By probability, it tells how likely it belongs to say class 0 or class 1.
Also , as mentioned above by #BBloggsbott - you just have to use np.argmax on the output array which will tell you the probability of belonging to class 1 (Positive class) by default.
Hope this helps.
Thanks.
Softmax returns probability distributions for the vector it gets as input. So, the fact that you are getting decimal values is not a problem. If you want to find the exact class each image belongs to, try using the argmax function on the predictions.
vcftools --vcf ALL.chr1.phase3_shapeit2_mvncall_integrated_v5.20130502.genotypes.vcf --weir-fst-pop POP1.txt --weir-fst-pop POP2.txt --out fst.POP1.POP2
The above script computes Fst distances on 1000 Genomes population data using Weir and Cokerham's 1984 formula. This formula uses 3 variance components, namely a,b,c (between populations; between individuals within populations; between gametes within individuals within populations).
The output directly provides the result of the formula but not the components that the program calculated to arrive at the final result. How can I ask Vcftools to output the values for a,b,c?
If you can get the data into the format for hierfstat, you can get the variance components from varcomp.glob. What I normally do is:
use vcftools with --012 to get genotypes
convert 0/1/2/-1 to hierfstat format (eg., 11/12/22/NA)
load the data into hierfstat and compute (see below)
R example:
library(hierfstat)
data = read.table("hierfstat.txt", header=T, sep="\t")
levels = data.frame(data$popid)
loci = data[,2:ncol(data)]
res = varcomp.glob(levels=levels, loci=loci, diploid=T)
print(res$loc)
print(res$F)
Fst for each locus (row) therefore is (without hierarchical design), from res$loc: res$loc[1]/sum(res$loc). If you have more complicated sampling, you'll need to interpret the variance components differently.
--update per your comment--
I do this in Pandas, but any language would do. It's a text replacement exercise. Just get your .012 file into a dataframe and convert as below. I read in row by row into numpy b/c I have tons of snps, but read_csv would work, too.
import pandas as pd
import numpy as np
z12_data = []
for i, line in enumerate(open(z12_file)):
line = line.strip()
line = [int(x) for x in line.split("\t")]
z12_data.append(np.array(line))
if i % 10 == 0:
print i
z12_data = np.array(z12_data)
z12_df = pd.DataFrame(z12_data)
z12_df = z12_df.drop(0, axis=1)
z12_df.columns = pd.Series(z12_df.columns)-1
hierf_trans = {0:11, 1:12, 2:22, -1:'NA'}
def apply_hierf_trans(series):
return [hierf_trans[x] if x in hierf_trans else x for x in series]
hierf = df.apply(apply_hierf_trans)
hierf.to_csv("hierfstat.txt", header=True, index=False, sep="\t")
Then, you'd read that file hierfstat.txt into R, these are your loci. You'd need to specify your levels in your sampling design (e.g., your population). Then call varcomp.glob() to get the variance components. I have a parallel version of this here if you want to use it.
Note that you are specifying 0 as the reference allele, in this case. May be what you want, maybe not. I often calculate minor allele frequency and make 2 the minor allele, but it depends on your study goal.