Histogram aggregation on averaged field - elasticsearch

I have documents that looks like
[
{
"price": 10,
"market.id": 1,
"product.id": 1
},
{
"price": 2,
"market.id": 3,
"product.id": 1
},
{
"price": 5,
"market.id": 3,
"product.id": 2
}
]
In order to count the number of market in a given average price interval,I made this ES query :
{
"size": 0,
"query": {
"bool": {
"must_not": {
"term": {
"price": 0
}
}
}
},
"aggs": {
"price_ranges": {
"histogram": {
"field": "price",
"interval": 0.5,
"min_doc_count": 0,
"extended_bounds": {
"min": 0,
"max": 45
}
},
"aggs": {
"market_count": {
"cardinality": {
"field": "market.id"
}
}
}
}
}
}
The problem here, is that doesn't take the average price but the price for each interval.
I don't know if it's possible to do this directly with an ES query.

Related

Stats Aggregation with Min Mode in ElasticSearch

I have the below mapping in ElasticSearch
{
"properties":{
"Costs":{
"type":"nested",
"properties":{
"price":{
"type":"integer"
}
}
}
}
}
So every document has an Array field Costs, which contains many elements and each element has price in it. I want to find the min and max price with the condition being - that from each array the element with the minimum price should be considered. So it is basically min/max among the minimum value of each array.
Lets say I have 2 documents with the Costs field as
Costs: [
{
"price": 100,
},
{
"price": 200,
}
]
and
Costs: [
{
"price": 300,
},
{
"price": 400,
}
]
So I need to find the stats
This is the query I am currently using
{
"costs_stats":{
"nested":{
"path":"Costs"
},
"aggs":{
"price_stats_new":{
"stats":{
"field":"Costs.price"
}
}
}
}
}
And it gives me this:
"min" : 100,
"max" : 400
But I need to find stats after taking minimum elements of each array for consideration.
So this is what i need:
"min" : 100,
"max" : 300
Like we have a "mode" option in sort, is there something similar in stats aggregation also, or any other way of achieving this, maybe using a script or something. Please suggest. I am really stuck here.
Let me know if anything is required
Update 1:
Query for finding min/max among minimums
{
"_source":false,
"timeout":"5s",
"from":0,
"size":0,
"aggs":{
"price_1":{
"terms":{
"field":"id"
},
"aggs":{
"price_2":{
"nested":{
"path":"Costs"
},
"aggs":{
"filtered":{
"aggs":{
"price_3":{
"min":{
"field":"Costs.price"
}
}
},
"filter":{
"bool":{
"filter":{
"range":{
"Costs.price":{
"gte":100
}
}
}
}
}
}
}
}
}
},
"minValue":{
"min_bucket":{
"buckets_path":"price_1>price_2>filtered>price_3"
}
}
}
}
Only few buckets are coming and hence the min/max is coming among those, which is not correct. Is there any size limit.
One way to achieve your use case is to add one more field id, in each document. With the help of id field terms aggregation can be performed, and so buckets will be dynamically built - one per unique value.
Then, we can apply min aggregation, which will return the minimum value among numeric values extracted from the aggregated documents.
Adding a working example with index data, mapping, search query, and search result
Index Mapping:
{
"mappings": {
"properties": {
"Costs": {
"type": "nested"
}
}
}
}
Index Data:
{
"id":1,
"Costs": [
{
"price": 100
},
{
"price": 200
}
]
}
{
"id":2,
"Costs": [
{
"price": 300
},
{
"price": 400
}
]
}
Search Query:
{
"size": 0,
"aggs": {
"id_terms": {
"terms": {
"field": "id",
"size": 15 <-- note this
},
"aggs": {
"nested_entries": {
"nested": {
"path": "Costs"
},
"aggs": {
"min_position": {
"min": {
"field": "Costs.price"
}
}
}
}
}
}
}
}
Search Result:
"aggregations": {
"id_terms": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 1,
"doc_count": 1,
"nested_entries": {
"doc_count": 2,
"min_position": {
"value": 100.0
}
}
},
{
"key": 2,
"doc_count": 1,
"nested_entries": {
"doc_count": 2,
"min_position": {
"value": 300.0
}
}
}
]
}
Using stats aggregation also, it can be achieved (if you add one more field id that uniquely identifies your document)
{
"size": 0,
"aggs": {
"id_terms": {
"terms": {
"field": "id",
"size": 15 <-- note this
},
"aggs": {
"costs_stats": {
"nested": {
"path": "Costs"
},
"aggs": {
"price_stats_new": {
"stats": {
"field": "Costs.price"
}
}
}
}
}
}
}
}
Update 1:
To find the maximum value among those minimums (as seen in the above query), you can use max bucket aggregation
{
"size": 0,
"aggs": {
"id_terms": {
"terms": {
"field": "id",
"size": 15 <-- note this
},
"aggs": {
"nested_entries": {
"nested": {
"path": "Costs"
},
"aggs": {
"min_position": {
"min": {
"field": "Costs.price"
}
}
}
}
}
},
"maxValue": {
"max_bucket": {
"buckets_path": "id_terms>nested_entries>min_position"
}
}
}
}
Search Result:
"aggregations": {
"id_terms": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 1,
"doc_count": 1,
"nested_entries": {
"doc_count": 2,
"min_position": {
"value": 100.0
}
}
},
{
"key": 2,
"doc_count": 1,
"nested_entries": {
"doc_count": 2,
"min_position": {
"value": 300.0
}
}
}
]
},
"maxValue": {
"value": 300.0,
"keys": [
"2"
]
}
}

How to get hours between Min and Max date in Elasticsearch Aggregation?

How can I calculate hours between max and min dates (same tree level of max and min) in Elasticsearch?
My Query:-
{
"size": 0,
"query": {
"bool": {
"must": []
}
},
"aggs": {
"group_by_areaId": {
"terms": {
"size": 100000,
"field": "areaId.keyword"
},
"aggs": {
"4m": {
"date_histogram": {
"field": "timestamp",
"format": "yyyy-MM-dd'T'HH:mm:ssZZ",
"interval": "4m",
"order": {
"_key": "asc"
}
},
"aggs": {
"maxDate": {
"max": {
"field": "timestamp"
}
},
"minDate": {
"min": {
"field": "timestamp"
}
}
}
}
}
}
}
}
And the response (short) as,
"aggregations": {
"group_by_areaId": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "key1",
"doc_count": 15,
"4m": {
"buckets": [
{
"key_as_string": "2020-02-12T06:08:00+0000",
"key": 1581487680000,
"doc_count": 3,
"minDate": {
"value": 1.581487847E12,
"value_as_string": "2020-02-12T06:10:47Z"
},
"maxDate": {
"value": 1.58148791E12,
"value_as_string": "2020-02-12T06:11:50Z"
},
*// Need hours between maxDate and minDate here
//{
// "hours" : "0.0175" (maxDate-minDate)
//}*
}
]
}
}
]
}
}
Anyone please help me to find out the solution?
Thanks in Advance.
You can leverage the bucket_script pipeline aggregation in order to compute the difference between min and max for each bucket.
Simply add the following at the same level as minDate and maxDate:
"hours": {
"bucket_script": {
"buckets_path": {
"min": "minDate",
"max": "maxDate"
},
"script": "(params.max - params.min) / 3600000"
}
}
For your sample data above, the result in this case would be 0.0175 (i.e. roughly 1 minute)

Elasticsearch Query 30Day Price Difference

I currently have an elasticsearch indexs for a product that spans a year each index separated by month (i think, could be by year if i dont have as much data as i think i do). Each day a process grabs all the prices of these products and puts them into elasticsearch. I am trying to build a query that can give me the percent change within the last 30days of each product.
Example...
{
"timestamp": "2019-09-18T02:38:51.417Z",
"productId": 1,
"marketPrice": 5.00,
"lowPrice": 4.30
},
{
"timestamp": "2019-08-30T02:38:51.417Z", (THIS SHOULD BE IGNORED)**
"productId": 1,
"marketPrice": 100.00,
"lowPrice": 200.15
},
{
"timestamp": "2019-08-18T02:38:51.417Z",
"productId": 1,
"marketPrice": 10.00,
"lowPrice": 2.15
},
{
"timestamp": "2019-09-18T02:38:51.417Z",
"productId": 2,
"marketPrice": 2.00,
"lowPrice": 1.00
},
{
"timestamp": "2019-08-18T02:38:51.417Z",
"productId": 2,
"marketPrice": 3.00,
"lowPrice": 2.00
}
Result Example
{
"productId": 1,
"marketPriceChangeWithin30Days": 200%,
"lowPriceChangeWithin30Days": 200%
},
{
"productId": 2,
"marketPriceChangeWithin30Days": 150%,
"lowPriceChangeWithin30Days": 200%
}
** The (THIS SHOULD BE IGNORED) is because the only two values that should be compared are the latest timestamp and the closest timestamp that is around 30days in the past.
The query would then return the product id 1 and 2 with the percent changed in the result as shown in the example response.
You can leverage the derivative pipeline aggregation to achieve exactly what you expect:
POST /sales/_search
{
"size": 0,
"aggs": {
"sales_per_month": {
"date_histogram": {
"field": "timestamp",
"interval": "month"
},
"aggs": {
"marketPrice": {
"sum": {
"field": "marketPrice"
}
},
"lowPrice": {
"sum": {
"field": "lowPrice"
}
},
"marketPriceDiff": {
"derivative": {
"buckets_path": "marketPrice"
}
},
"lowPriceDiff": {
"derivative": {
"buckets_path": "lowPrice"
}
}
}
}
}
}
UPDATE:
Given your updated requirements, I'd suggest using the serial_diff pipeline aggregation with a lag of 30 days:
POST /sales/_search
{
"size": 0,
"query": {
"range": {
"timestamp": {
"gte": "now-31d",
"lte": "now"
}
}
},
"aggs": {
"products": {
"terms": {
"field": "productId",
"size": 10
},
"aggs": {
"histo": {
"date_histogram": {
"field": "timestamp",
"interval": "day",
"min_doc_count": 0
},
"aggs": {
"marketPrice": {
"avg": {
"field": "marketPrice"
}
},
"lowPrice": {
"avg": {
"field": "lowPrice"
}
},
"30d_diff_marketPrice": {
"serial_diff": {
"buckets_path": "marketPrice",
"lag": 30
}
},
"30d_diff_lowPrice": {
"serial_diff": {
"buckets_path": "lowPrice",
"lag": 30
}
}
}
}
}
}
}
}

Elastic aggregation to identify period A vs B percentage increases

I have some daily sales data indexed into Elasticsearch. I successfully run a number of aggregations to identify top sellers across a date range etc.
I am now trying to write a single query to do the following:
Identify Top n sellers over a date range (Period A)
Take the results of Period A and sum sales for these products over second date range (Period B)
Compare sales in period A to Period B and identify those with percentage increases above X%.
My attempt so far:
{
"query": {
"bool": {
"filter": [
{
"range": {
"date": {
"gte": "2017-10-01",
"lte": "2017-10-14"
}
}
}
]
}
},
"size": 0,
"aggs": {
"data_split": {
"terms": {
"size": 10,
"field": "product_id"
},
"aggs": {
"date_periods": {
"date_range": {
"field": "date",
"format": "YYYY-MM-dd",
"ranges": [
{
"from": "2017-10-01",
"to": "2017-10-07"
},
{
"from": "2017-10-08",
"to": "2017-10-14"
}
]
},
"aggs": {
"product_id_split": {
"terms": {
"field": "product_id"
},
"aggs": {
"unit_sum": {
"sum": {
"field": "units"
}
}
}
}
}
}
}
}
}
}
Although this outputs results for two periods, I don't think this is quite what I want as the initial filter is running from Period A start date to Period B end date and I think summing results for that range instead of Period A only. I also don't get the % comparison, I would probably do this at my application level, but I understand could be handled with a scripted Elastic query?
It would be especially awesome if instead of top n results in period A, I could set a sales threshold of say 1,000 sales.
Any pointers would be much appreciated. Thanks in advance!
Currently running Elastic 5.6
{
"query": {
"bool": {
"filter": [
{
"range": {
"date": {
"gte": "2017-10-01",
"lte": "2017-10-14"
}
}
}
]
}
},
"size": 0,
"aggs": {
"data_split": {
"terms": {
"size": 10,
"field": "product_id"
},
"aggs": {
"date_period1": {
"filter": {
"range": {
"date": {
"gte": "2017-10-01",
"lte": "2017-10-07"
}
}
},
"aggs": {
"unit_sum": {
"sum": {
"field": "units"
}
}
}
},
"date_period2": {
"filter": {
"range": {
"date": {
"gte": "2017-10-08",
"lte": "2017-10-14"
}
}
},
"aggs": {
"unit_sum": {
"sum": {
"field": "units"
}
}
}
},
"percentage_increase": {
"bucket_script": {
"buckets_path": {
"firstPeriod": "date_period1>unit_sum",
"secondPeriod": "date_period2>unit_sum"
},
"script": "(params.secondPeriod-params.firstPeriod)*100/params.firstPeriod"
}
},
"retain_buckets": {
"bucket_selector": {
"buckets_path": {
"percentage": "percentage_increase"
},
"script": "params.percentage > 5"
}
}
}
}
}
}
And a full test data in this gist.
The result of this aggregation is giving you this:
"aggregations": {
"data_split": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "A",
"doc_count": 6,
"date_period1": {
"doc_count": 3,
"unit_sum": {
"value": 150
}
},
"date_period2": {
"doc_count": 3,
"unit_sum": {
"value": 160
}
},
"percentage_increase": {
"value": 6.666666666666667
}
},
{
"key": "C",
"doc_count": 2,
"date_period1": {
"doc_count": 1,
"unit_sum": {
"value": 50
}
},
"date_period2": {
"doc_count": 1,
"unit_sum": {
"value": 70
}
},
"percentage_increase": {
"value": 40
}
}
]
}
}
The idea is that you use two filter type of aggregations for the two date intervals. And for each you calculate a sum. Then, using a third aggregation of type bucket_script you calculate the percentage increase (note, though, that it will be a negative number of there is a decrease in sales for example).
Then, using yet another aggregation - of type bucket_selector - you keep the product_ids where the percentage is larger than 5%.

How to set value for missing field in range aggregation?

I'm grouping by offerId, the each bucket has two buckets: price <=0 and price > 0. I need to make sure that price <= 0 includes documents where price field is missing:
{
"size": 0,
"aggs": {
"by_offer_id": {
"terms": {
"field": "offerId"
},
"aggs": {
"by_price": {
"range": {
"field": "price",
"ranges": [
{
"to": 0
},
{
"from": 0
}
]
},
"aggs": {
"price_stats": {
"stats": {
"field": "price"
}
}
}
}
}
}
}
}
I've tried adding "missing": 0 after "field": "price",, but it throws SearchPhaseExecutionException.
I'm using 1.7.5, but potentially could use syntax from 2.4.x.
In this particular case I don't event need to set "missing" : 0,
{
"size": 0,
"aggs": {
"by_offer_id": {
"terms": {
"field": "offerId"
},
"aggs": {
"price_stats": {
"stats": {
"field": "price"
}
}
}
}
}
}
because term aggregation returns total document count, white stats aggregation only includes documents with existing price and returns the total number. I can deduce how many document don't have a price field by subtraction.
I Think you should use script just like this:
{
"size": 0,
"aggs": {
"by_offer_id": {
"terms": {
"field": "offerId"
},
"aggs": {
"by_price": {
"range": {
"script": {
"lang": "painless",
"source": "doc['price'].value ==null ? 0 : doc['price'].value"
},
"ranges": [
{
"to": 0
},
{
"from": 0
}
]
},
"aggs": {
"price_stats": {
"stats": {
"field": "price"
}
}
}
}
}
}
}
}
or
"source": "doc['price'].value * 1"

Resources