Best patterns for dynamic checks in Go without reflection? - go

Any chance there are good patterns in any of our codebases that help reduce redundant checks on typed fields/structs? I feel like Lisp handles these things well, but trying to understand if there are any good patterns without the need for something like reflection, etc.
For example, for custom structs, I find myself needing to do a lot of:
type helloworld struct {
field1 *string
field2 *string
field3 int
}
if field1 != nil {
if len([]rune(*field1)) > MAX_ALLOWED_LEN) return errors.New("exceeded max allowable length")
}
if field2 != nil {
if len([]rune(*field2)) > MAX_ALLOWED_LEN) return errors.New("exceeded max allowable length")
}
if field3 != 0 { //do stuff}
....
maps are great, but typing can be too generic a lot of the time, which can also cause confusion. I ask, because some of these checks are redundant and proliferate through a lot of packages, so when I need to add an additional field, refactoring is time consuming. It would be nice if I have validation on certain types or fields while keeping performance high.

3 directions, not the most straight forward, but they can reduce your check blocks:
Method 1: Define your own annotation
Golang has annotations in structs
type bla struct {
t string `json:"some,omitempty"`
}
This is actually an open annotation structure (tags).
A nice example (contains some reflection) is https://github.com/mitchellh/mapstructure
Look at line 374 of the mapstructure.go file. It is pretty re-usable, and you could use it as base for your own annotation.
To use it in your context you would create types which you can then parse.
Method 2: DRY check function
Your check seems to be the same or similar.
A generic comparator which iterates over fields:
func check(fields ...interface{}) error {
for v:=range fields {
if v==nil {
return errors.New("nil")
}
switch v.(type) {
case *string:
if len([]rune(*v)) > MAX_ALLOWED_LEN) {
return errors.New("exceeded max allowable length")
}
}
...
}
}
Method 3: Generics.
The switch type in method 2 might be able to be rewritten in a generic style. Not easier, but can be prettier.

Related

Are there any programming pitfalls of using a map with an empty interface as the KEY

Are there any programming pitfalls of using maps in this manner:
type Set struct {
theMap map[interface{}]struct{}
}
StringSet := NewSet("abc", "pqr")
IntSet := NewSet(1, 2)
DateSet := NewSet(time.Date(2021, 2, 15, 0, 0, 0, 0, time.UTC))
Just to be clear, I know what I'm doing is probably against the spirit of several 'best practices', but that isn't my question here. I'm specifically thinking of programming issues like memory issues due to different element sizes, increased chance of hash collisions, performance degradation due to increased type assertion, etc.
Some more info:
I need to create some 'sets' of various datatypes in my application. I see in Essential Go that the best way to use sets is to use a map with an empty struct as the value.
However, in the absence of generics, I would either need to make a new type of Set for each type of data/element which I wish to store in my sets:
type StringSet struct {
stringMap map[string]struct{}
}
type DateSet struct {
dateMap map[time.Time]struct{}
}
type IntSet struct {
intMap map[int]struct{}
}
...or, use the empty interface as the key of a hashmap:
type Set struct {
theMap map[interface{}]struct{}
}
The 2nd option works very well (you can find my complete code here), but I'm worried that I'm overlooking something obvious and will run into problems later.
Thanks for your help.

how to decode a byte slice to different structs elegantly

var response Response
switch wrapper.Domain {
case "":
response = new(TypeA)
case "TypeB":
response = new(TypeB)
case "TypeC":
response = new(TypeC)
case "TypeD":
response = new(TypeD)
}
_ = decoder.Decode(response)
As shown in the code snippet, I got enough information from the Domain filed of wrapper to determine the type of response, and for each type, the following operations are performed:
create a new instance of that type using new
use the decoder to decode the byte slice to the instance created in step 1
I am wondering if there is a way to make the first step more generic and get rid of the switch statement.
A bit about your code
As per discussion in comments, I would like to share some experience.
I do not see nothing bad in your solution, but there are few options to improve it, depends what you want to do.
Your code looks like classic Factory. The Factory is a pattern, that create object of a single family, based on some input parameters.
In Golang this is commonly used in simpler way as a Factory Method, sometimes called Factory function.
Example:
type Vehicle interface {};
type Car struct {}
func NewCar() Vehicle {
return &Car{}
}
But you can easily expand it to do something like you:
package main
import (
"fmt"
"strings"
)
type Vehicle interface {}
type Car struct {}
type Bike struct {}
type Motorbike struct {}
// NewDrivingLicenseCar returns a car for a user, to perform
// the driving license exam.
func NewDrivingLicenseCar(drivingLicense string) (Vehicle, error) {
switch strings.ToLower(drivingLicense) {
case "car":
return &Car{}, nil
case "motorbike":
return &Motorbike{}, nil
case "bike":
return &Bike{}, nil
default:
return nil, fmt.Errorf("Sorry, We are not allowed to make exam for your type of car: \"%s\"", drivingLicense)
}
}
func main() {
fmt.Println(NewDrivingLicenseCar("Car"))
fmt.Println(NewDrivingLicenseCar("Tank"))
}
Above code produces output:
&{} <nil>
<nil> Sorry, We are not allowed to make exam for your type of car: "Tank"
So probably you can improve your code by:
Closing into a single function, that takes a string and produces the Response object
Adding some validation and the error handling
Giving it some reasonable name.
There are few related patterns to the Factory, which can replace this pattern:
Chain of responsibility
Dispatcher
Visitor
Dependency injection
Reflection?
There is also comment from #icza about Reflection. I agree with him, this is used commonly, and We cannot avoid the reflection in our code, because sometimes things are so dynamic.
But in your scenario it is bad solution because:
You lose compile-time type checking
You have to modify code when you are adding new type, so why not to add new line in this Factory function?
You make your code slower(see references), it adds 50%-100% lose of performance.
You make your code so unreadable and complex
You have to add a much more error handling to cover not trivial errors from reflection.
Of course, you can add a lot of tests to cover a huge number of scenarios. You can support TypeA, TypeB, TypeC in your code and you can cover it with tests, but in production code sometime you can pass TypeXYZ and you will get runtime error if you do not catch it.
Conclusion
There is nothing bad with your switch/case scenario, probably this is the most readable and the easiest way to do what you want to do.
Reference
Factory method: https://www.sohamkamani.com/golang/2018-06-20-golang-factory-patterns/
Classic book about patterns in programming: Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma and his band of four, ISBN: 978-0201633610
Reflection benchmarks: https://gist.github.com/crast/61779d00db7bfaa894c70d7693cee505

Polymorphism on structs without methods in Go

I'm working on several web server projects in Go, and there is a common problem that I'm always facing. I know we can achieve something like polymorphism in Go with interfaces and methods, but many times I had a scenario that I needed polymorphism on some data-holder structs that (maybe) just had some common fields, and no methods at all.
For example consider a story writing platform, where each user can write short stories and novels:
type ShortStory struct {
Name string
ID int
Body string
}
type LongStory struct {
Name string
ID int
Chapters []string
}
Now I simply want to have a data layer function, say GetStories(), which fetches all stories written by a user from database.
func GetStories(id int) []SOME_TYPE {
...
}
There are really no methods that I want to have on my ShortStory and LongStory structs. I know I can add a dummy method and let them satisfy some Storier interface, then use that interface as return type. But since there is no method I would want on a data container model, adding a dummy method just for the language to enable a feature, seems like a poor design choice to me.
I can also make the function return []interface{}, but that's against the whole idea of "typed language" I believe.
Another way is to have two separate GetShortStories() and GetLongStories() methods, which return a slice of their own type. But at some point I would finally want to merge those two slices into one and there I would again need a []interface{}. Yes, I can return a JSON like:
{
"short_stories" : [...],
"long_stories" : [...]
}
But I want my json to be like:
[{...}, {...}, {...}]
And I wouldn't change my APIs because of a language's limits!
I'm not a pro in Go, so am I missing something here? Is there a Go-ish approach to this, or is it really bad language design on Golang's side?
If you cannot express what you want to do using the features of a language, you should first try to change the way you structure your program before blaming the language itself. There are concepts that cannot be expressed in Go but can be expressed well in other languages, and there are concepts you cannot express well in other languages but you can in Go. Change the way you solve the problem to effectively use the language.
One way you can address your problem is using a different type of struct:
type Story struct {
Name string
ID int
ShortBody string
Chapters []string
}
If the Chapters is empty, then it is a short story.
Another way:
type Story struct {
Name string
ID int
Content StoryContent
}
type StoryContent interface {
Type() string
}
type ShortStory interface {
StoryContent
Body() string
}
type LongStory interface {
StoryContent
Chapters() []string
}
etc.

how to pass different types to a function

I have two golang functions, doing exactly same thing, one takes input a slice and the other takes a map as input. I want to combine this into one function, to avoid duplication.
func DoSomething([]data) {
//do something.
}
func DoSomething(map[string]data) {
//do something.
}
Combined function may look like:
func DoSomethingNew (param type) {
//param could be map or slice
}
I want to know if it is possible to pass different types to same function in golang and how. I googled but couldn't find anything relevant.
You can use interfaces Go Playground
func F(data interface{}) {
switch data.(type){
case []int:
fmt.Println("Slice")
fmt.Println(data)
case map[string]int:
fmt.Println("Map")
fmt.Println(data)
}
fmt.Println()
}
where you actually check for the type and do something based on the type.
There are several ways you could do this, but the simple way would be to make it so DoSomethingNew accepts the interface{} type. Inside of the method you would then do a type switch or in this case with only two options, perhaps just one type assertion, followed by the other, returning error if both fail. Another option would be to have both as arguments and check for nil inside the function with a similar if, else-if, else pattern to handle the error if the input is of neither types you're looking for. To make your code more safe you could move to a more strict interface than the empty one which all types implement. You could also do some method chaining or even implement the method with using the types themselves as the receiving type. Here's an example that shows a few of the ideas; https://play.golang.org/p/_v2AyFjGzv

Any down-side always using pointers for struct field types?

Originally I figured I'd only use pointers for optional struct fields which could potentionally be nil in cases which it was initially built for.
As my code evolved I was writing different layers upon my models - for xml and json (un)marshalling. In these cases even the fields I thought would always be a requirement (Id, Name etc) actually turned out to be optional for some layers.
In the end I had put a * in front of all the fields including so int became *int, string became *string etc.
Now I'm wondering if I had been better of not generalising my code so much? I could have duplicated the code instead, which I find rather ugly - but perhaps more efficient than using pointers for all struct fields?
So my question is whether this is turning into an anti-pattern and just a bad habbit, or if this added flexibility does not come at a cost from a performance point of view?
Eg. can you come up with good arguments for sticking with option A:
type MyStruct struct {
Id int
Name string
ParentId *int
// etc.. only pointers where NULL columns in db might occur
}
over this option B:
type MyStruct struct {
Id *int
Name *string
ParentId *int
// etc... using *pointers for all fields
}
Would the best practice way of modelling your structs be from a purely database/column perspective, or eg if you had:
func (m *MyStruct) UnmarshalXML(d *xml.Decoder, start xml.StartElement) error {
var v struct {
XMLName xml.Name `xml:"myStruct"`
Name string `xml:"name"`
Parent string `xml:"parent"`
Children []*MyStruct `xml:"children,omitempty"`
}
err := d.DecodeElement(&v, &start)
if err != nil {
return err
}
m.Id = nil // adding to db from xml, there's initially no Id, until after the insert
m.Name = v.Name // a parent might be referenced by name or alias
m.ParentId = nil // not by parentId, since it's not created yet, but maybe by nesting elements like you see above in the V struct (Children []*ContentType)
// etc..
return nil
}
This example could be part of the scenario where you want to add elements from XML to the database. Here ids would generally not make sense, so instead we use nesting and references on name or other aliases. An Id for the structs would not be set until we got the id, after the INSERT query. Then using that ID we could traverse down the hierachy to the child elements etc.
This would allow us to have just 1 MyStruct, and use eg. different POST http request handler functions, depending if the call came from form input, or xml importing where a nested hierarchy and different relations might need come different handling.
In the end I guess what I'm asking is:
Would you be better off separating struct models for db, xml- and json operations (or whatever scenario that you can think of), than using struct field pointers all the way, so we can reuse the model for different, yet related stuff?
Apart from possible performance (more pointers = more things for the GC to scan), safety (nil pointer dereference), convenience (s.a = 2 vs s.a = new(int); *s.a = 42), and memory penalties (a bool is one byte, a *bool is four to eight), there is one thing that really bothers me in the all-pointer approach. It violates the Single responsibility principle.
Is the MyStruct you get from XML or DB same as MyStruct? What if the DB schema will change? What if the XML changes format? What if you'll also need to unmarshal it into JSON, but in a slightly different manner? And what if you need to support all that (and in multiple versions!) at the same time?
A lot of pain comes to you when you try to make one thing do many things. Is having one do-it-all type instead of N specialised types really worth it?

Resources