I recently discovered Pollard Rho algorithm, which made me really exited. But when i tried to use it by copying the programs that i found on the internet, all of them prohibit using for prime numbers.
Related
I am trying to implement RSA crypto system using some equations to get better time for decryption.
The problem that I have is a huge numbers in the function that calculate "n choose k", the factorial for huge numbers take a lot of time.
When I start wrote the code I wrote it with naive calculation, but now I am seeing that the program running time very long, even if I compare to the original RSA.
Also I use in GMP library for big numbers, but it doesn't affecting on the problem, I hope.
Using Pascal's triangle is a fast method for calculating n choose k. You can refer to the answer here for more info.
The fastest method I know of would be to make use of the results from "On the Complexity of Calculating Factorials". Just calculate all 3 factorials, then perform the two division operations, each with complexity M(n logn).
I've read about factorization of integers into the prime factors and did a proof of concept implementation of Pollard's rho algorithm:
https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
The algorithm is easy to implement, works so far. However it may (and does) fail for certain numbers. The Wikipedia page suggest to restart the algorithm using a different start condition or pick a random generator function.
That does not sound very deterministic to me. Is there an approach that guarantees that the algorithm will eventually terminate?
I know that the state of the art is the elliptic curve integer factorization, and I plan to implement it for laughs and giggles later. To do so I first need a prime factorization algorithm for small numbers though, that is why I have to deal with something like Pollards rho algorithm first.
I am just a beginner of computer science. I learned something about running time but I can't be sure what I understood is right. So please help me.
So integer factorization is currently not a polynomial time problem but primality test is. Assume the number to be checked is n. If we run a program just to decide whether every number from 1 to sqrt(n) can divide n, and if the answer is yes, then store the number. I think this program is polynomial time, isn't it?
One possible way that I am wrong would be a factorization program should find all primes, instead of the first prime discovered. So maybe this is the reason why.
However, in public key cryptography, finding a prime factor of a large number is essential to attack the cryptography. Since usually a large number (public key) is only the product of two primes, finding one prime means finding the other. This should be polynomial time. So why is it difficult or impossible to attack?
Casual descriptions of complexity like "polynomial factoring algorithm" generally refer to the complexity with respect to the size of the input, not the interpretation of the input. So when people say "no known polynomial factoring algorithm", they mean there is no known algorithm for factoring N-bit natural numbers that runs in time polynomial with respect to N. Not polynomial with respect to the number itself, which can be up to 2^N.
The difficulty of factorization is one of those beautiful mathematical problems that's simple to understand and takes you immediately to the edge of human knowledge. To summarize (today's) knowledge on the subject: we don't know why it's hard, not with any degree of proof, and the best methods we have run in more than polynomial time (but also significantly less that exponential time). The result that primality testing is even in P is pretty recent; see the linked Wikipedia page.
The best heuristic explanation I know for the difficulty is that primes are randomly distributed. One of the easier-to-understand results is Dirichlet's theorem. This theorem say that every arithmetic progression contains infinitely many primes, in other words, you can think of primes as being dense with respect to progressions, meaning you can't avoid running into them. This is the simplest of a rather large collection of such results; in all of them, primes appear in ways very much analogous to random numbers.
The difficult of factoring is thus analogous to the impossibility of reversing a one-time pad. In a one-time pad, there's a bit we don't know XOR with another one we don't. We get zero information about an individual bit knowing the result of the XOR. Replace "bit" with "prime" and multiplication with XOR, and you have the factoring problem. It's as if you've multiplied two random numbers together, and you get very little information from product (instead of zero information).
If we run a program just to decide whether every number from 1 to sqrt(n) can divide n, and if the answer is yes, then store the number.
Even ignoring that the divisibility test will take longer for bigger numbers, this approach takes almost twice as long if you just add a single (binary) digit to n. (Actually it will take twice as long if you add two digits)
I think that is the definition of exponential runtime: Make n one bit longer, the algorithm takes twice as long.
But note that this observation applies only to the algorithm you proposed. It is still unknown if integer factorization is polynomial or not. The cryptographers sure hope that it is not, but there are also alternative algorithms that do not depend on prime factorization being hard (such as elliptic curve cryptography), just in case...
Which is the fastest and most reliable factorization method used now a days ? I have gone thru
Fermat's Factorization and Pollard's rho factorization method and was wondering are there any better methods to code and implement ?
Please check the Wikipedia article. It has almost everything you want to find: http://en.wikipedia.org/wiki/Integer_factorization
The solution really depends on the range of the number, and sometimes the property of the number.
For big number around or less than 100 digits, according to Wikipedia, quadratic sieve is the best. For larger numbers, general number field sieve is better.
I don't talk about small cases, as you are already mentioning Pollard's rho, this should be trivial.
I am aware that there are a number of primality testing algorithms used in practice (Sieve of Eratosthenes, Fermat's test, Miller-Rabin, AKS, etc). However, they are either slow (e.g. sieve), probabalistic (Fermat and Miller-Rabin), or relatively difficult to implement (AKS).
What is the best deterministic solution to determine whether or not a number is prime?
Note that I am primarily (pun intended) interested in testing against numbers on the order of 32 (and maybe 64) bits. So a robust solution (applicable to larger numbers) is not necessary.
Up to ~2^30 you could brute force with trial-division.
Up to 3.4*10^14, Rabin-Miller with the first 7 primes has been proven to be deterministic.
Above that, you're on your own. There's no known sub-cubic deterministic algorithm.
EDIT : I remembered this, but I didn't find the reference until now:
http://reference.wolfram.com/legacy/v5_2/book/section-A.9.4
PrimeQ first tests for divisibility using small primes, then uses the
Miller-Rabin strong pseudoprime test base 2 and base 3, and then uses
a Lucas test.
As of 1997, this procedure is known to be correct only for n < 10^16,
and it is conceivable that for larger n it could claim a composite
number to be prime.
So if you implement Rabin-Miller and Lucas, you're good up to 10^16.
If I didn't care about space, I would try precomputing all the primes below 2^32 (~4e9/ln(4e9)*4 bytes, which is less than 1GB), store them in the memory and use a binary search. You can also play with memory mapping of the file containing these precomputed primes (pros: faster program start, cons: will be slow until all the needed data is actually in the memory).
If you can factor n-1 it is easy to prove that n is prime, using a method developed by Edouard Lucas in the 19th century. You can read about the algorithm at Wikipedia, or look at my implementation of the algorithm at my blog. There are variants of the algorithm that require only a partial factorization.
If the factorization of n-1 is difficult, the best method is the elliptic curve primality proving algorithm, but that requires more math, and more code, than you may be willing to write. That would be much faster than AKS, in any case.
Are you sure that you need an absolute proof of primality? The Baillie-Wagstaff algorithm is faster than any deterministic primality prover, and there are no known counter-examples.
If you know that n will never exceed 2^64 then strong pseudo-prime tests using the first twelve primes as bases are sufficient to prove n prime. For 32-bit integers, strong pseudo-prime tests to the three bases 2, 7 and 61 are sufficient to prove primality.
Use the Sieve of Eratosthenes to pre-calculate as many primes as you have space for. You can fit in a lot at one bit per number and halve the space by only sieving odd numbers (treating 2 as a special case).
For numbers from Sieve.MAX_NUM up to the square of Sieve.MAX_NUM you can use trial division because you already have the required primes listed. Judicious use of Miller-Rabin on larger unfactored residues can speed up the process a lot.
For numbers larger than that I would use one of the probabilistic tests, Miller-Rabin is good and if repeated a few times can give results that are less likely to be wrong than a hardware failure in the computer you are running.