Is there any function or method in Julia that would allow one to compute the intersection of two matrices A and B?
There are many possible definitions for intersection.
Suppose that you have:
julia> a=[1 2 3;4 5 6;3 2 1]
3×3 Matrix{Int64}:
1 2 3
4 5 6
3 2 1
julia> b = a'
3×3 adjoint(::Matrix{Int64}) with eltype Int64:
1 4 3
2 5 2
3 6 1
and if you mean by intersection you mean matrix with elements who have the same values in both matrices and zero otherwise you could do:
julia> (a .== b) .* a
3×3 Matrix{Int64}:
1 0 3
0 5 0
3 0 1
Related
Who can help.
To transform a vector into a one-dimensional matrix just run in Julia:
a = copy(permutedims([1,2,3]))
To transform the matrix "a" into a vector just use:
b = copy(vec(a))
If you have a matrix "[1 2 3; 4 5 6]" to transform it into a vector, just:
c = vec([1 2 3; 4 5 6])
Now how to make the vector have the form of the 2x3 matrix like:
2×3 Matrix{Int64}:
1 2 3
4 5 6
You can use reshape
julia> c = vec([1 2 3; 4 5 6])
6-element Vector{Int64}:
1
4
2
5
3
6
julia> M=reshape(c,2,3)
2×3 Matrix{Int64}:
1 2 3
4 5 6
Note that this operation does not reallocate memory, c and M share the same memory. By example:
julia> c[1]=10
10
julia> M
2×3 Matrix{Int64}:
10 2 3
4 5 6
Issue: When building a matrix out of single rows, Julia interprets them as columns instead.
a = [1 2 3; 4 5 6; 7 8 9]
3×3 Array{Int64,2}:
1 2 3
4 5 6
7 8 9
b = [a[1:2,:]; a[1:2,:]] # Rows duplicated correctly
4×3 Array{Int64,2}:
1 2 3
4 5 6
1 2 3
4 5 6
c = [a[1,:]; a[1,:]] # Rows converted to columns
6-element Array{Int64,1}:
1
2
3
1
2
3
How to fix this?
In addition to the range index, you can transpose vectors
julia> [a[1, :]'; a[1, :]']
2×3 Array{Int64,2}:
1 2 3
1 2 3
It looks likes this approach is somewhat more performant, than the range index, but it should be tested on larger matrices, also it is not consistent, if you have ranges and single columns
using BenchmarkTools
f1(a) = [a[1:1,:]; a[1:1,:]]
f2(a) = [a[1, :]'; a[1, :]']
julia> #btime f1($a)
122.440 ns (3 allocations: 352 bytes)
2×3 Array{Int64,2}:
1 2 3
1 2 3
julia> #btime f2($a)
107.480 ns (3 allocations: 352 bytes)
2×3 Array{Int64,2}:
1 2 3
1 2 3
Solution: Although it may feel a bit perplexing, its because the type has changed from a matrix into a vector. To keep the type the same you'll need to select from your desired row, to your desired row in a similar manner to the second line of code in your example.
c = [a[1:1,:]; a[1:1,:]]
2×3 Array{Int64,2}:
1 2 3
1 2 3
I have a huge matrix and want to sort the columns in place for speed/memory efficency. Is it possible to use in-place sort for the columns of a matrix in Julia?
As an example, take the following matrix:
julia> M=Matrix{Int}(3,3);
julia> for i = 1:size(M)[1]
for j = 1:size(M)[2]
M[i,j]=3*(j-1)+i
end
end
julia> M
3×3 Array{Int64,2}:
1 4 7
2 5 8
3 6 9
I want to use in-place sort for the columns to obtain the matrix
3×3 Array{Int64,2}:
3 6 9
2 5 8
1 4 7
This can be obtained without in-place sort as follows:
julia> M_sorted=Matrix{Int}(3,3);
julia> for j = 1:size(M)[2]
M_sorted[:,j]=sort(M[:,j],rev=true)
end
julia> M_sorted
3×3 Array{Int64,2}:
3 6 9
2 5 8
1 4 7
But something like that fails (here only for one column):
julia> sort!(M[:,1],rev=true)
3-element Array{Int64,1}:
3
2
1
julia> M
3×3 Array{Int64,2}:
1 4 7
2 5 8
3 6 9
Is there any way to use in-place sort in this case? Note that there is no problem with the indexing since the matrix is saved column-wise in memory:
julia> M[1:end]
9-element Array{Int64,1}:
1
2
3
4
5
6
7
8
9
So I think it should be possible.
Slicing creates a copy of the column and sorts on that. If you instead want to directly sort in the memory of the existing array, use a view. Example:
M=Matrix{Int}(undef,3,3)
for i = 1:size(M)[1]
for j = 1:size(M)[2]
M[i,j]=3*(j-1)+i
end
end
M
3×3 Array{Int64,2}:
1 4 7
2 5 8
3 6 9
sort!(#view(M[:,1]),rev=true)
M
3×3 Array{Int64,2}:
3 4 7
2 5 8
1 6 9
A matrix of size nxn needs to be constructed with the desired properties.
n is even. (given as input to the algorithm)
Matrix should contain integers from 0 to n-1
Main diagonal should contain only zeroes and matrix should be symmetric.
All numbers in each row should be different.
For various n , any one of the possible output is required.
input
2
output
0 1
1 0
input
4
output
0 1 3 2
1 0 2 3
3 2 0 1
2 3 1 0
Now the only idea that comes to my mind is to brute-force build combinations recursively and prune.
How can this be done in a iterative way perhaps efficiently?
IMO, You can handle your answer by an algorithm to handle this:
If 8x8 result is:
0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0
You have actually a matrix of two 4x4 matrices in below pattern:
m0 => 0 1 2 3 m1 => 4 5 6 7 pattern => m0 m1
1 0 3 2 5 4 7 6 m1 m0
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
And also each 4x4 is a matrix of two 2x2 matrices with a relation to a power of 2:
m0 => 0 1 m1 => 2 3 pattern => m0 m1
1 0 3 2 m1 m0
In other explanation I should say you have a 2x2 matrix of 0 and 1 then you expand it to a 4x4 matrix by replacing each cell with a new 2x2 matrix:
0 => 0+2*0 1+2*0 1=> 0+2*1 1+2*1
1+2*0 0+2*0 1+2*1 0+2*1
result => 0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0
Now expand it again:
0,1=> as above 2=> 0+2*2 1+2*2 3=> 0+2*3 1+2*3
1+2*2 0+2*2 1+2*3 0+2*3
I can calculate value of each cell by this C# sample code:
// i: row, j: column, n: matrix dimension
var v = 0;
var m = 2;
do
{
var p = m/2;
v = v*2 + (i%(n/p) < n/m == j%(n/p) < n/m ? 0 : 1);
m *= 2;
} while (m <= n);
We know each row must contain each number. Likewise, each row contains each number.
Let us take CS convention of indices starting from 0.
First, consider how to place the 1's in the matrix. Choose a random number k0, from 1 to n-1. Place the 1 in row 0 at position (0,k0). In row 1, if k0 = 1 in which case there is already a one placed. Otherwise, there are n-2 free positions and place the 1 at position (1,k1). Continue in this way until all the 1 are placed. In the final row there is exactly one free position.
Next, repeat with the 2 which have to fit in the remaining places.
Now the problem is that we might not be able to actually complete the square. We may find there are some constraints which make it impossible to fill in the last digits. The problem is that checking a partially filled latin square is NP-complete.(wikipedia) This basically means pretty compute intensive and there no know short-cut algorithm. So I think the best you can do is generate squares and test if they work or not.
If you only want one particular square for each n then there might be simpler ways of generating them.
The link Ted Hopp gave in his comment Latin Squares. Simple Construction does provide a method for generating a square starting with the addition of integers mod n.
I might be wrong, but if you just look for printing a symmetric table - a special case of latin squares isomorphic to the symmetric difference operation table over a powerset({0,1,..,n}) mapped to a ring {0,1,2,..,2^n-1}.
One can also produce such a table, using XOR(i,j) where i and j are n*n table indexes.
For example:
def latin_powerset(n):
for i in range(n):
for j in range(n):
yield (i, j, i^j)
Printing tuples coming from previously defined special-case generator of symmetric latin squares declared above:
def print_latin_square(sq, n=None):
cells = [c for c in sq]
if n is None:
# find the length of the square side
n = 1; n2 = len(cells)
while n2 != n*n:
n += 1
rows = list()
for i in range(n):
rows.append(" ".join("{0}".format(cells[i*n + j][2]) for j in range(n)))
print("\n".join(rows))
square = latin_powerset(8)
print(print_latin_square(square))
outputs:
0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0
See also
This covers more generic cases of latin squares, rather than that super symmetrical case with the trivial code above:
https://www.cut-the-knot.org/arithmetic/latin2.shtml (also pointed in the comments above for symmetric latin square construction)
https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/matrices/latin.html
I am looking for a general function to tile or repeat matrices along an arbitrary number of dimensions an arbitrary number of times. Python and Matlab have these features in NumPy's tile and Matlab's repmat functions. Julia's repmat function only seems to support up to 2-dimensional arrays.
The function should look like repmatnd(a, (n1,n2,...,nk)). a is an array of arbitrary dimension. And the second argument is a tuple specifying the number of times the array is repeated for each dimension k.
Any idea how to tile a Julia array on greater than 2 dimensions? In Python I would use np.tile and in matlab repmat, but the repmat function in Julia only supports 2 dimensions.
For instance,
x = [1 2 3]
repmatnd(x, 3, 1, 3)
Would result in:
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
And for
x = [1 2 3; 1 2 3; 1 2 3]
repmatnd(x, (1, 1, 3))
would result in the same thing as before. I imagine the Julia developers will implement something like this in the standard library, but until then, it would be nice to have a fix.
Use repeat:
julia> X = [1 2 3]
1x3 Array{Int64,2}:
1 2 3
julia> repeat(X, outer = [3, 1, 3])
3x3x3 Array{Int64,3}:
[:, :, 1] =
1 2 3
1 2 3
1 2 3
[:, :, 2] =
1 2 3
1 2 3
1 2 3
[:, :, 3] =
1 2 3
1 2 3
1 2 3