Related
Description:
I'm following the tutorial on hypervisor development. After day 4 of the series I cannot make my code run. Right after __vmx_vmlaunch instruction gets executed successfully, the virtual machine I'm testing the hypervisor on, reboots. I believe this is caused by some incorrect settings of VMCS Host State Area (Chapter 24.5). There is no BSOD, crash nor error message in WinDbg.
I see two ways to approach this problem. One is to somehow extract more information from WinDbg. And the second one would require someone to spot what stupid thing I'm doing or missing in the vmcs initialization.
Unfortunately the code in tutorial is incomplete. I've spend some fair time to make sure that everything that tutorial covers is the same in my code. I will highlight parts which where added by me.
I'm really sorry for such an amount of code. Again let me emphasise that I believe the problem lies within the HOST fields (as the crash inside guest vm shouldn't crash the host).
int init_vmcs(struct __vcpu_t* vcpu)
{
log_entry("init_vmcs()\n");
// Determinate exact size which is implementation specific.
// We expect it to be 4KB, but it is not guaranteed.
union __vmx_basic_msr_t vmx_basic_msr = { 0 };
vmx_basic_msr.control = __readmsr(IA32_VMX_BASIC);
if (vmx_basic_msr.bits.vmxon_region_size != sizeof(struct __vmcs_t)) {
log_error("Non standard vmcs region size: %llx. Support not yet implemented.\n",
vmx_basic_msr.bits.vmxon_region_size);
log_exit("init_vmcs()\n");
return -1;
}
PHYSICAL_ADDRESS physical_max;
physical_max.QuadPart = MAXULONG64;
vcpu->vmcs = MmAllocateContiguousMemory(sizeof(struct __vmcs_t), physical_max);
if (!vcpu->vmcs) {
log_error("Failed to allocate vcpu->vmcs(MmAllocateContiguousMemory failed).\n");
log_exit("init_vmcs()\n");
return -1;
}
RtlSecureZeroMemory(vcpu->vmcs, sizeof(struct __vmcs_t));
vcpu->vmcs_physical = MmGetPhysicalAddress(vcpu->vmcs).QuadPart;
// Discover VMCS revision identifier that a processor uses by reading the
// VMX capability MSR IA32_VMX_BASIC.
vcpu->vmcs->header.bits.revision_identifier = (unsigned int)vmx_basic_msr.bits.vmcs_revision_identifier;
vcpu->vmcs->header.bits.shadow_vmcs_indicator = 0;
// Before loading vmcs we invoke vmclear to flush data which might be cached by processor.
if (__vmx_vmclear(&vcpu->vmcs_physical) || __vmx_vmptrld(&vcpu->vmcs_physical)) {
log_error("Failed to flush data or load vmcs. (__vmx_vmclear or __vmx_vmptrld failed).\n");
log_exit("init_vmcs()\n");
return -1;
}
// Initialize VMCS Guest State Area.
if (__vmx_vmwrite(GUEST_CR0, __readcr0()) ||
__vmx_vmwrite(GUEST_CR3, __readcr3()) ||
__vmx_vmwrite(GUEST_CR4, __readcr4()) ||
__vmx_vmwrite(GUEST_DR7, __readdr(7)) ||
__vmx_vmwrite(GUEST_RSP, vcpu->guest_rsp) ||
__vmx_vmwrite(GUEST_RIP, vcpu->guest_rip) ||
__vmx_vmwrite(GUEST_RFLAGS, __readeflags()) ||
__vmx_vmwrite(GUEST_DEBUG_CONTROL, __readmsr(IA32_DEBUGCTL)) ||
__vmx_vmwrite(GUEST_SYSENTER_ESP, __readmsr(IA32_SYSENTER_ESP)) ||
__vmx_vmwrite(GUEST_SYSENTER_EIP, __readmsr(IA32_SYSENTER_EIP)) ||
__vmx_vmwrite(GUEST_SYSENTER_CS, __readmsr(IA32_SYSENTER_CS)) ||
__vmx_vmwrite(GUEST_VMCS_LINK_POINTER, ~0ULL) ||
__vmx_vmwrite(GUEST_FS_BASE, __readmsr(IA32_FS_BASE)) ||
__vmx_vmwrite(GUEST_GS_BASE, __readmsr(IA32_GS_BASE))
) {
log_error("Failed to set guest state. (__vmx_vmwrite failed).\n");
log_exit("init_vmcs()\n");
return -1;
}
if (__vmx_vmwrite(CR0_READ_SHADOW, __readcr0()) ||
__vmx_vmwrite(CR4_READ_SHADOW, __readcr4())
) {
log_error("Failed to set cr0_read_shadow or cr4_read_shadow. (__vmx_vmwrite failed).\n");
log_exit("init_vmcs()\n");
return -1;
}
union __vmx_entry_control_t entry_controls = { 0 };
entry_controls.bits.ia32e_mode_guest = 1;
vmx_adjust_entry_controls(&entry_controls);
__vmx_vmwrite(VM_ENTRY_CONTROLS, entry_controls.control);
union __vmx_exit_control_t exit_controls = { 0 };
exit_controls.bits.host_address_space_size = 1;
vmx_adjust_exit_controls(&exit_controls);
__vmx_vmwrite(VM_EXIT_CONTROLS, exit_controls.control);
union __vmx_pinbased_control_msr_t pinbased_controls = { 0 };
vmx_adjust_pinbased_controls(&pinbased_controls);
__vmx_vmwrite(PIN_BASED_VM_EXECUTION_CONTROLS, pinbased_controls.control);
union __vmx_primary_processor_based_control_t primary_controls = { 0 };
primary_controls.bits.use_msr_bitmaps = 1;
primary_controls.bits.active_secondary_controls = 1;
vmx_adjust_primary_processor_based_controls(&primary_controls);
__vmx_vmwrite(PRIMARY_PROCESSOR_BASED_VM_EXECUTION_CONTROLS, primary_controls.control);
union __vmx_secondary_processor_based_control_t secondary_controls = { 0 };
secondary_controls.bits.enable_rdtscp = 1;
secondary_controls.bits.enable_xsave_xrstor = 1;
secondary_controls.bits.enable_invpcid = 1;
vmx_adjust_secondary_processor_based_controls(&secondary_controls);
__vmx_vmwrite(SECONDARY_PROCESSOR_BASED_VM_EXECUTION_CONTROLS, secondary_controls.control);
__vmx_vmwrite(GUEST_CS_SELECTOR, __read_cs());
__vmx_vmwrite(GUEST_SS_SELECTOR, __read_ss());
__vmx_vmwrite(GUEST_DS_SELECTOR, __read_ds());
__vmx_vmwrite(GUEST_ES_SELECTOR, __read_es());
__vmx_vmwrite(GUEST_FS_SELECTOR, __read_fs());
__vmx_vmwrite(GUEST_GS_SELECTOR, __read_gs());
__vmx_vmwrite(GUEST_LDTR_SELECTOR, __read_ldtr());
__vmx_vmwrite(GUEST_TR_SELECTOR, __read_tr());
__vmx_vmwrite(GUEST_CS_LIMIT, __segmentlimit(__read_cs()));
__vmx_vmwrite(GUEST_SS_LIMIT, __segmentlimit(__read_ss()));
__vmx_vmwrite(GUEST_DS_LIMIT, __segmentlimit(__read_ds()));
__vmx_vmwrite(GUEST_ES_LIMIT, __segmentlimit(__read_es()));
__vmx_vmwrite(GUEST_FS_LIMIT, __segmentlimit(__read_fs()));
__vmx_vmwrite(GUEST_GS_LIMIT, __segmentlimit(__read_gs()));
__vmx_vmwrite(GUEST_LDTR_LIMIT, __segmentlimit(__read_ldtr()));
__vmx_vmwrite(GUEST_TR_LIMIT, __segmentlimit(__read_tr()));
struct __pseudo_descriptor_64_t gdtr;
struct __pseudo_descriptor_64_t idtr;
_sgdt(&gdtr);
__sidt(&idtr);
__vmx_vmwrite(GUEST_GDTR_BASE, gdtr.base_address);
__vmx_vmwrite(GUEST_GDTR_LIMIT, gdtr.limit);
__vmx_vmwrite(GUEST_IDTR_BASE, idtr.base_address);
__vmx_vmwrite(GUEST_IDTR_LIMIT, idtr.limit);
__vmx_vmwrite(GUEST_CS_BASE, get_segment_base(gdtr.base_address, __read_cs()));
__vmx_vmwrite(GUEST_DS_BASE, get_segment_base(gdtr.base_address, __read_ds()));
__vmx_vmwrite(GUEST_SS_BASE, get_segment_base(gdtr.base_address, __read_ss()));
__vmx_vmwrite(GUEST_ES_BASE, get_segment_base(gdtr.base_address, __read_es()));
__vmx_vmwrite(GUEST_CS_ACCESS_RIGHTS, read_segment_access_rights(__read_cs()));
__vmx_vmwrite(GUEST_SS_ACCESS_RIGHTS, read_segment_access_rights(__read_ss()));
__vmx_vmwrite(GUEST_DS_ACCESS_RIGHTS, read_segment_access_rights(__read_ds()));
__vmx_vmwrite(GUEST_ES_ACCESS_RIGHTS, read_segment_access_rights(__read_es()));
__vmx_vmwrite(GUEST_FS_ACCESS_RIGHTS, read_segment_access_rights(__read_fs()));
__vmx_vmwrite(GUEST_GS_ACCESS_RIGHTS, read_segment_access_rights(__read_gs()));
__vmx_vmwrite(GUEST_LDTR_ACCESS_RIGHTS, read_segment_access_rights(__read_ldtr()));
__vmx_vmwrite(GUEST_TR_ACCESS_RIGHTS, read_segment_access_rights(__read_tr()));
__vmx_vmwrite(GUEST_LDTR_BASE, get_segment_base(gdtr.base_address, __read_ldtr()));
__vmx_vmwrite(GUEST_TR_BASE, get_segment_base(gdtr.base_address, __read_tr()));
// Initialize VMCS Host State Area.
__vmx_vmwrite(HOST_CR0, __readcr0()); // Added by me
__vmx_vmwrite(HOST_CR3, __readcr3()); // Added by me
__vmx_vmwrite(HOST_CR4, __readcr4()); // Added by me
// Fields RPL and TI in host selector fields must be cleared.
unsigned short host_selector_mask = 7;
__vmx_vmwrite(HOST_CS_SELECTOR, __read_cs() & ~host_selector_mask);
__vmx_vmwrite(HOST_SS_SELECTOR, __read_ss() & ~host_selector_mask);
__vmx_vmwrite(HOST_DS_SELECTOR, __read_ds() & ~host_selector_mask);
__vmx_vmwrite(HOST_ES_SELECTOR, __read_es() & ~host_selector_mask);
__vmx_vmwrite(HOST_FS_SELECTOR, __read_fs() & ~host_selector_mask);
__vmx_vmwrite(HOST_GS_SELECTOR, __read_gs() & ~host_selector_mask);
__vmx_vmwrite(HOST_TR_SELECTOR, __read_tr() & ~host_selector_mask);
__vmx_vmwrite(HOST_TR_BASE, get_segment_base(gdtr.base_address, __read_tr()));
__vmx_vmwrite(HOST_GDTR_BASE, gdtr.base_address);
__vmx_vmwrite(HOST_IDTR_BASE, idtr.base_address);
unsigned __int64 vmm_stack = (unsigned __int64)vcpu->vmm_context->stack + VMM_STACK_SIZE;
if (__vmx_vmwrite(HOST_RSP, vmm_stack) ||
__vmx_vmwrite(HOST_RIP, vmm_entrypoint)
) {
log_error("Failed to set host_rsp, host_rip. (__vmx_vmwrite failed).\n");
log_exit("init_vmcs()\n");
return -1;
}
log_exit("init_vmcs()\n");
return 0;
}
void init_logical_processor(struct __vmm_context_t *vmm_context, void *guest_rsp)
{
log_entry("init_logical_processor()\n");
unsigned long cur_processor_number = KeGetCurrentProcessorNumber();
struct __vcpu_t* vcpu = vmm_context->vcpu_table[cur_processor_number];
log_debug("vcpu: %llx, guest_rsp: %llx\n", cur_processor_number, guest_rsp);
vcpu->guest_rsp = guest_rsp;
vcpu->guest_rip = (void*) guest_entry_stub;
adjust_control_registers();
if (enable_vmx_operation() != 0) {
log_error("Failed to enable_vmx_operation.\n");
goto _end;
}
if (!vm_has_cpuid_support()) {
log_error("VMX operation is not supported by the processor.\n");
goto _end;
}
log_success("VMX operation is supported by the processor.\n");
if (init_vmxon(vcpu)) {
log_error("Failed to initialize vmxon region.\n");
goto _end;
}
log_success("Initialized vmxon region.\n");
unsigned char vmxon_res = __vmx_on(&vcpu->vmxon_physical);
if (vmxon_res != 0) {
log_error("Failed to put vcpu into VMX operation. Error code: %d\n", vmxon_res);
goto _end;
}
log_success("vmx_on succeeded.\n");
if (init_vmcs(vcpu)) {
log_error("Failed to initialize vmcs.\n");
goto _end;
}
log_success("Initialized vmcs.\n");
unsigned char vmlaunch_res = vmxlaunch(); // just a wrapper over __vmx_vmlaunch
if (vmlaunch_res != 0) {
goto _end;
}
_end:
log_exit("init_logical_processor()\n");
}
vmm_entrypoint proc
int 3 ; addded by me
vmm_entrypoint endp
guest_entry_stub proc
mov rax, 1337h
hlt
guest_entry_stub endp
Update
I've read again the Intel manual section regarding VM-entry checks and found out that my init_vmcs function wasn't setting HOST_FS_BASE, HOST_GS_BASE. After adding these fields it finally worked and trapped inside vmm_entrypoint.
However I would love to hear some solution on how to debug the unexpected shutdowns.
In a bash script I am using a many-producer single-consumer pattern. Producers are background processes writing lines into a fifo (via GNU Parallel). The consumer reads all lines from the fifo, then sorts, filters, and prints the formatted result to stdout.
However, it could take a long time until the full result is available. Producers are usually fast on the first few results but then would slow down. Here I am more interested to see chunks of data every few seconds, each sorted and filtered individually.
mkfifo fifo
parallel ... >"$fifo" &
while chunk=$(read with timeout 5s and at most 10s <"$fifo"); do
process "$chunk"
done
The loop would run until all producers are done and all input is read. Each chunk is read until there has been no new data for 5s, or until 10s have passed since the chunk was started. A chunk may also be empty if there was no new data for 10s.
I tried to make it work like this:
output=$(mktemp)
while true; do
wasTimeout=0 interruptAt=$(( $(date '+%s') + 10 ))
while true; do
IFS= read -r -t5 <>"${fifo}"
rc="$?"
if [[ "${rc}" -gt 0 ]]; then
[[ "${rc}" -gt 128 ]] && wasTimeout=1
break
fi
echo "$REPLY" >>"${output}"
if [[ $(date '+%s') -ge "${interruptAt}" ]]; then
wasTimeout=1
break
fi
done
echo '---' >>"${output}"
[[ "${wasTimeout}" -eq 0 ]] && break
done
Tried some variations of this. In the form above it reads the first chunk but then loops forever. If I use <"${fifo}" (no read/write as above) it blocks after the first chunk. Maybe all of this could be simplified with buffer and/or stdbuf? But both of them define blocks by size, not by time.
This is not a trivial problem to resolve. As I hinted, a C program (or a program in some programming language other than the shell) is probably the best solution. Some of the complicating factors are:
Reading with timeouts.
If data arrives soon enough, the timeout changes.
Different systems have different sets of interval timing functions:
alarm() is likely available everywhere, but has only 1-second resolution which is liable to accumulated rounding errors. (Compile this version with make UFLAGS=-DUSE_ALARM; on macOS, use make UFLAGS=-DUSE_ALARM LDLIB2=.)
setitimer()
uses microsecond timing and the struct timeval type. (Compile this version with make UFLAGS=-DUSE_SETITIMER; on macOS, compile with make UFLAGS=-DUSE_SETITIMER LDLIB2=.)
timer_create() and
timer_settime() etc use the modern nanosecond type struct timespec. This is available on Linux; it is not available on macOS 10.14.5 Mojave or earlier. (Compile this version with make; it won't work on macOS.)
The program usage message is:
$ chunker79 -h
Usage: chunker79 [-hvV][-c chunk][-d delay][-f file]
-c chunk Maximum time to wait for data in a chunk (default 10)
-d delay Maximum delay after line read (default: 5)
-f file Read from file instead of standard input
-h Print this help message and exit
-v Verbose mode: print timing information to stderr
-V Print version information and exit
$
This code is available in my SOQ (Stack Overflow Questions) repository on GitHub as file chunker79.c in the src/so-5631-4784 sub-directory. You will need some of the support code from the src/libsoq directory too.
/*
#(#)File: chunker79.c
#(#)Purpose: Chunk Reader for SO 5631-4784
#(#)Author: J Leffler
#(#)Copyright: (C) JLSS 2019
*/
/*TABSTOP=4*/
/*
** Problem specification from the Stack Overflow question
**
** In a bash script I am using a many-producer single-consumer pattern.
** Producers are background processes writing lines into a fifo (via GNU
** Parallel). The consumer reads all lines from the fifo, then sorts,
** filters, and prints the formatted result to stdout.
**
** However, it could take a long time until the full result is
** available. Producers are usually fast on the first few results but
** then would slow down. Here I am more interested to see chunks of
** data every few seconds, each sorted and filtered individually.
**
** mkfifo fifo
** parallel ... >"$fifo" &
** while chunk=$(read with timeout 5s and at most 10s <"$fifo"); do
** process "$chunk"
** done
**
** The loop would run until all producers are done and all input is
** read. Each chunk is read until there has been no new data for 5s, or
** until 10s have passed since the chunk was started. A chunk may also
** be empty if there was no new data for 10s.
*/
/*
** Analysis
**
** 1. If no data arrives at all for 10 seconds, then the program should
** terminate producing no output. This timeout is controlled by the
** value of time_chunk in the code.
** 2. If data arrives more or less consistently, then the collection
** should continue for 10s and then finish. This timeout is also
** controlled by the value of time_chunk in the code.
** 3. If a line of data arrives before 5 seconds have elapsed, and no
** more arrives for 5 seconds, then the collection should finish.
** (If the first line arrives after 5 seconds and no more arrives
** for more than 5 seconds, then the 10 second timeout cuts in.)
** This timeout is controlled by the value of time_delay in the code.
** 4. This means that we want two separate timers at work:
** - Chunk timer (started when the program starts).
** - Delay timer (started each time a line is read).
**
** It doesn't matter which timer goes off, but further timer signals
** should be ignored. External signals will confuse things; tough!
**
** -- Using alarm(2) is tricky because it provides only one time, not two.
** -- Using getitimer(2), setitimer(2) uses obsolescent POSIX functions,
** but these are available on macOS.
** -- Using timer_create(2), timer_destroy(2), timer_settime(2),
** timer_gettime(2) uses current POSIX function but is not available
** on macOS.
*/
#include "posixver.h"
#include "stderr.h"
#include "timespec_io.h"
#include <assert.h>
#include <signal.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/uio.h>
#include <time.h>
#include <unistd.h>
#ifdef USE_SETITIMER
#include "timeval_math.h"
#include "timeval_io.h"
#include <sys/time.h>
#endif /* USE_SETITIMER */
static const char optstr[] = "hvVc:d:f:";
static const char usestr[] = "[-hvV][-c chunk][-d delay][-f file]";
static const char hlpstr[] =
" -c chunk Maximum time to wait for data in a chunk (default 10)\n"
" -d delay Maximum delay after line read (default: 5)\n"
" -f file Read from file instead of standard input\n"
" -h Print this help message and exit\n"
" -v Verbose mode: print timing information to stderr\n"
" -V Print version information and exit\n"
;
static struct timespec time_delay = { .tv_sec = 5, .tv_nsec = 0 };
static struct timespec time_chunk = { .tv_sec = 10, .tv_nsec = 0 };
static struct timespec time_start;
static bool verbose = false;
static void set_chunk_timeout(void);
static void set_delay_timeout(void);
static void cancel_timeout(void);
static void alarm_handler(int signum);
// Using signal() manages to set SA_RESTART on a Mac.
// This is allowed by standard C and POSIX, sadly.
// signal(SIGALRM, alarm_handler);
#if defined(USE_ALARM)
static void set_chunk_timeout(void)
{
if (verbose)
err_remark("-->> %s()\n", __func__);
alarm(time_chunk.tv_sec);
struct sigaction sa;
sa.sa_handler = alarm_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sigaction(SIGALRM, &sa, NULL);
if (verbose)
err_remark("<<-- %s()\n", __func__);
}
static void set_delay_timeout(void)
{
if (verbose)
err_remark("-->> %s()\n", __func__);
unsigned time_left = alarm(0);
if (time_left > time_delay.tv_sec)
alarm(time_delay.tv_sec);
else
alarm(time_left);
if (verbose)
err_remark("<<-- %s()\n", __func__);
}
static void cancel_timeout(void)
{
if (verbose)
err_remark("-->> %s()\n", __func__);
alarm(0);
signal(SIGALRM, SIG_IGN);
if (verbose)
err_remark("<<-- %s()\n", __func__);
}
#elif defined(USE_SETITIMER)
static inline struct timeval cvt_timespec_to_timeval(struct timespec ts)
{
return (struct timeval){ .tv_sec = ts.tv_sec, .tv_usec = ts.tv_nsec / 1000 };
}
static void set_chunk_timeout(void)
{
if (verbose)
err_remark("-->> %s()\n", __func__);
struct itimerval tv_new = { { 0, 0 }, { 0, 0 } };
tv_new.it_value = cvt_timespec_to_timeval(time_chunk);
struct itimerval tv_old;
if (setitimer(ITIMER_REAL, &tv_new, &tv_old) != 0)
err_syserr("failed to set interval timer: ");
struct sigaction sa;
sa.sa_handler = alarm_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sigaction(SIGALRM, &sa, NULL);
if (verbose)
err_remark("<<-- %s()\n", __func__);
}
static void set_delay_timeout(void)
{
if (verbose)
err_remark("-->> %s()\n", __func__);
struct itimerval tv_until;
if (getitimer(ITIMER_REAL, &tv_until) != 0)
err_syserr("failed to set interval timer: ");
struct timeval tv_delay = cvt_timespec_to_timeval(time_delay);
if (verbose)
{
char buff1[32];
fmt_timeval(&tv_delay, 6, buff1, sizeof(buff1));
char buff2[32];
fmt_timeval(&tv_until.it_value, 6, buff2, sizeof(buff2));
err_remark("---- %s(): delay %s, left %s\n", __func__, buff1, buff2);
}
if (cmp_timeval(tv_until.it_value, tv_delay) <= 0)
{
if (verbose)
err_remark("---- %s(): no need for delay timer\n", __func__);
}
else
{
struct itimerval tv_new = { { 0, 0 }, { 0, 0 } };
tv_new.it_value = cvt_timespec_to_timeval(time_delay);
struct itimerval tv_old;
if (setitimer(ITIMER_REAL, &tv_new, &tv_old) != 0)
err_syserr("failed to set interval timer: ");
if (verbose)
err_remark("---- %s(): set delay timer\n", __func__);
}
if (verbose)
err_remark("<<-- %s()\n", __func__);
}
static void cancel_timeout(void)
{
if (verbose)
err_remark("-->> %s()\n", __func__);
struct itimerval tv_new =
{
.it_value = { .tv_sec = 0, .tv_usec = 0 },
.it_interval = { .tv_sec = 0, .tv_usec = 0 },
};
struct itimerval tv_old;
if (setitimer(ITIMER_REAL, &tv_new, &tv_old) != 0)
err_syserr("failed to set interval timer: ");
if (verbose)
err_remark("<<-- %s()\n", __func__);
}
#else /* USE_TIMER_GETTIME */
#include "timespec_math.h"
static timer_t t0 = { 0 };
static void set_chunk_timeout(void)
{
if (verbose)
err_remark("-->> %s()\n", __func__);
struct sigevent ev =
{
.sigev_notify = SIGEV_SIGNAL,
.sigev_signo = SIGALRM,
.sigev_value.sival_int = 0,
.sigev_notify_function = 0,
.sigev_notify_attributes = 0,
};
if (timer_create(CLOCK_REALTIME, &ev, &t0) < 0)
err_syserr("failed to create a timer: ");
struct itimerspec it =
{
.it_interval = { .tv_sec = 0, .tv_nsec = 0 },
.it_value = time_chunk,
};
struct itimerspec ot;
if (timer_settime(t0, 0, &it, &ot) != 0)
err_syserr("failed to activate timer: ");
struct sigaction sa;
sa.sa_handler = alarm_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sigaction(SIGALRM, &sa, NULL);
if (verbose)
err_remark("<<-- %s()\n", __func__);
}
static void set_delay_timeout(void)
{
if (verbose)
err_remark("-->> %s()\n", __func__);
struct itimerspec time_until;
if (timer_gettime(t0, &time_until) != 0)
err_syserr("failed to set per-process timer: ");
char buff1[32];
fmt_timespec(&time_delay, 6, buff1, sizeof(buff1));
char buff2[32];
fmt_timespec(&time_until.it_value, 6, buff2, sizeof(buff2));
err_remark("---- %s(): delay %s, left %s\n", __func__, buff1, buff2);
if (cmp_timespec(time_until.it_value, time_delay) <= 0)
{
if (verbose)
err_remark("---- %s(): no need for delay timer\n", __func__);
}
else
{
struct itimerspec time_new =
{
.it_interval = { .tv_sec = 0, .tv_nsec = 0 },
.it_value = time_delay,
};
struct itimerspec time_old;
if (timer_settime(t0, 0, &time_new, &time_old) != 0)
err_syserr("failed to set per-process timer: ");
if (verbose)
err_remark("---- %s(): set delay timer\n", __func__);
}
if (verbose)
err_remark("<<-- %s()\n", __func__);
}
static void cancel_timeout(void)
{
if (timer_delete(t0) != 0)
err_syserr("failed to delete timer: ");
}
#endif /* Timing mode */
/* Writing to stderr via err_remark() is not officially supported */
static void alarm_handler(int signum)
{
assert(signum == SIGALRM);
if (verbose)
err_remark("---- %s(): signal %d\n", __func__, signum);
}
static void read_chunks(FILE *fp)
{
size_t num_data = 0;
size_t max_data = 0;
struct iovec *data = 0;
size_t buflen = 0;
char *buffer = 0;
ssize_t length;
size_t chunk_len = 0;
clock_gettime(CLOCK_REALTIME, &time_start);
set_chunk_timeout();
while ((length = getline(&buffer, &buflen, fp)) != -1)
{
if (num_data >= max_data)
{
size_t new_size = (num_data * 2) + 2;
void *newspace = realloc(data, new_size * sizeof(data[0]));
if (newspace == 0)
err_syserr("failed to allocate %zu bytes data: ", new_size * sizeof(data[0]));
data = newspace;
max_data = new_size;
}
data[num_data].iov_base = buffer;
data[num_data].iov_len = length;
num_data++;
if (verbose)
err_remark("Received line %zu\n", num_data);
chunk_len += length;
buffer = 0;
buflen = 0;
set_delay_timeout();
}
cancel_timeout();
if (chunk_len > 0)
{
if ((length = writev(STDOUT_FILENO, data, num_data)) < 0)
err_syserr("failed to write %zu bytes to standard output: ", chunk_len);
else if ((size_t)length != chunk_len)
err_error("failed to write %zu bytes to standard output "
"(short write of %zu bytes)\n", chunk_len, (size_t)length);
}
if (verbose)
err_remark("---- %s(): data written (%zu bytes)\n", __func__, length);
for (size_t i = 0; i < num_data; i++)
free(data[i].iov_base);
free(data);
free(buffer);
}
int main(int argc, char **argv)
{
const char *name = "(standard input)";
FILE *fp = stdin;
err_setarg0(argv[0]);
err_setlogopts(ERR_MICRO);
int opt;
while ((opt = getopt(argc, argv, optstr)) != -1)
{
switch (opt)
{
case 'c':
if (scn_timespec(optarg, &time_chunk) != 0)
err_error("Failed to convert '%s' into a time value\n", optarg);
break;
case 'd':
if (scn_timespec(optarg, &time_delay) != 0)
err_error("Failed to convert '%s' into a time value\n", optarg);
break;
case 'f':
if ((fp = fopen(optarg, "r")) == 0)
err_syserr("Failed to open file '%s' for reading: ", optarg);
name = optarg;
break;
case 'h':
err_help(usestr, hlpstr);
/*NOTREACHED*/
case 'v':
verbose = true;
break;
case 'V':
err_version("CHUNKER79", &"#(#)$Revision$ ($Date$)"[4]);
/*NOTREACHED*/
default:
err_usage(usestr);
/*NOTREACHED*/
}
}
if (optind != argc)
err_usage(usestr);
if (verbose)
{
err_remark("chunk: %3lld.%09ld\n", (long long)time_chunk.tv_sec, time_chunk.tv_nsec);
err_remark("delay: %3lld.%09ld\n", (long long)time_delay.tv_sec, time_delay.tv_nsec);
err_remark("file: %s\n", name);
}
read_chunks(fp);
return 0;
}
My SOQ repository also has a script gen-data.sh which makes use of some custom programs to generate a data stream such as this (the seed value is written to standard error, not standard output):
$ gen-data.sh
# Seed: 1313715286
2019-06-03 23:04:16.653: Zunmieoprri Rdviqymcho 5878 2017-03-29 03:59:15 Udransnadioiaeamprirteo
2019-06-03 23:04:18.525: Rndflseoevhgs Etlaevieripeoetrnwkn 9500 2015-12-18 10:49:15 Ebyrcoebeezatiagpleieoefyc
2019-06-03 23:04:20.526: Nrzsuiakrooab Nbvliinfqidbujoops 1974 2020-05-13 08:05:14 Lgithearril
2019-06-03 23:04:21.777: Eeagop Aieneose 6533 2016-11-06 22:51:58 Aoejlwebbssroncmeovtuuueigraa
2019-06-03 23:04:23.876: Izirdoeektau Atesltiybysaclee 4557 2020-09-13 02:24:46 Igrooiaauiwtna
2019-06-03 23:04:26.145: Yhioit Eamrexuabagsaraiw 9703 2014-09-13 07:44:12 Dyiiienglolqopnrbneerltnmsdn
^C
$
When fed into chunker79 with default options, I get output like:
$ gen-data.sh | chunker79
# Seed: 722907235
2019-06-03 23:06:20.570: Aluaezkgiebeewal Oyvahee 1022 2015-08-12 07:45:54 Weuababeeduklleym
2019-06-03 23:06:24.100: Gmujvoyevihvoilc Negeiiuvleem 8196 2015-08-29 21:15:15 Nztkrvsadeoeagjgoyotvertavedi
$
If you analyze the time intervals (look at the first two fields in the output lines), that output meets the specification. A still more detailed analysis is shown by:
$ timecmd -mr -- gen-data.sh | timecmd -mr -- chunker79
2019-06-03 23:09:14.246 [PID 57159] gen-data.sh
2019-06-03 23:09:14.246 [PID 57160] chunker79
# Seed: -1077610201
2019-06-03 23:09:14.269: Woreio Rdtpimvoscttbyhxim 7893 2017-03-12 12:46:57 Uywaietirkekes
2019-06-03 23:09:16.939: Uigaba Nzoxdeuisofai 3630 2017-11-16 09:28:59 Jnsncgoesycsevdscugoathusaoq
2019-06-03 23:09:17.845: Sscreua Aloaoonnsuur 5163 2016-08-13 19:47:15 Injhsiifqovbnyeooiimitaaoir
2019-06-03 23:09:19.272 [PID 57160; status 0x0000] - 5.026s - chunker79
2019-06-03 23:09:22.084 [PID 57159; status 0x8D00] - 7.838s - gen-data.sh
$
There is a noticeable pause in this setup between when the output from chunker79 appears and when gen-data.sh completes. That's due to Bash waiting on all processes in the pipeline to complete, and gen-data.sh doesn't complete until the next time it writes to the pipe after the message that finishes chunker79. This is an artefact of this test setup; it wouldn't be a factor in the shell script outlined in the question.
I would consider writing a safe multi-threaded program with queues.
I know Java better, but there might be more modern suitable languages like Go and Kotlin.
Something like this:
#!/usr/bin/perl
$timeout = 3;
while(<STDIN>) {
# Make sure there is some input
push #out,$_;
eval {
local $SIG{ALRM} = sub { die };
alarm $timeout;
while(<STDIN>) {
alarm $timeout;
push #out,$_;
}
alarm 0;
};
system "echo","process",#out;
}
GNU Parallel 20200122 introduced --blocktimeout (--bt):
find ~ | parallel -j3 --bt 2s --pipe wc
This works like normal GNU Parallel except if it takes > 2 seconds to fill a block. In that case the block read so far is simply passed to wc (unless it is empty).
It has a slightly odd startup behaviour: You have to wait 3*2s (jobslots*timeout) before the output stabilizes, and you get an output at least every 2s.
I am using a PIC18F26K80 and an XC8 compiler. I am trying to initialise an SD card and create a file. I have simply formatted the SD card on Windows to have a "FAT32" file system and an "Allocation unit size" of 512 bytes. The capacity of the SD card is 2GB. I am using the MDD library from the MLA Legacy version. My main is the following:
FSFILE * file;
char sendBuffer[22] = "This is test string 1";
//**************************************************
// main function
//**************************************************
int main()
{
initIO();
LATBbits.LATB0 = 0;
// Initialise SPI and SD-card
while ( !MDD_MediaDetect() );
// Initialize the device
while ( !FSInit() );
// Initialize
#ifdef ALLOW_WRITES
// Create a new file
file = FSfopenpgm ( "FILE.TXT", "w" );
if ( file == NULL )
while(1);
// Write 21 1-byte objects from sendBuffer into the file
if ( FSfwrite ( (void *) sendBuffer, 1, 21, file ) != 21 )
while(1);
// Close the file
if ( FSfclose ( file ) )
while(1);
#endif
LATBbits.LATB0 = 1; //LED
while(1) {}
return (0);
}
The program gets stuck inside the function "FSInit()" and the error I get from the function is "CE_BAD_PARTITION", which means "The boot record is bad".
The "initIO()" function is the following:
//==============================================================================
// void initIO( void );
//==============================================================================
// Sets the pins on the PIC to input or output and determines the speed of the
// internal oscilaltor
// input: none
// return: none
//==============================================================================
void initIO()
{
OSCCON = 0x75; // Clock speed = 32MHz (4x8Mhz)
TRISA = 0;
TRISB = 0;
TRISC = 0;
TRISBbits.TRISB0 = 0; //LED
TRISCbits.TRISC3 = 0; // set SCL pin as output
TRISCbits.TRISC4 = 1; // set RC4 pin as input
TRISCbits.TRISC5 = 0;
TRISAbits.TRISA5 = 0;
}
I try to make a C++ TLS client with OpenSSL which use non-blocking socket on Windows.
I want to work with SSL_read()/SSL_write() and select() functions but I don't find the algorithme which work well and the net not provide good and simple exemple. There is allready a timeout return by select() after the last block of data recved.
I don't understand OpenSSL api, SSL_pending() return already 0 and select a time out??
Select cause a criticale delay at last bloc of data.
My algorithme for recv_buffer() is this:
I have function which check if a socket is readable or writeable (work well):
int CSocket::socket_RWable(int rw_flag, const int time_out)
{
fd_set rwfs;
int error = 0;
struct timeval timeout;
try
{
memset(&timeout, 0, sizeof(struct timeval));
timeout.tv_sec = time_out;
while( 1 ) // boucle de surveillance
{
FD_ZERO(&rwfs);
FD_SET(m_socket, &rwfs);
// surveiller la socket en lecture ou ecriture
if(rw_flag == R_MODE)
error = select(m_socket+1, &rwfs, NULL, NULL, &timeout);
else if(rw_flag == W_MODE)
error = select(m_socket+1, NULL, &rwfs, NULL, &timeout);
if(error < 0) // echec de select
throw 1;
else if(error == 0) // fin du time out
throw 2;
// Une opération d' entree/sortie sur la socket est disponible
if(FD_ISSET(m_socket, &rwfs) != 0)
{
FD_CLR(m_socket, &rwfs );
return 0;
}
}
}
catch(int ret)
{
FD_CLR(m_socket, &rwfs );
if(ret == 1) throw CErreur("[-] CSocket : select : ", CWinUtil::Win_sys_error(NET_ERROR));
else if(ret == 2) return -1;
}
return -1;
}
UPDATE:
and this function recve the data into a buffer and cause a time out after the las block of data:
int CTLSClient::recv_buffer(char *buffer, const int buffer_size, const int time_out)
{
int selectErr = 0;
int sslErr = 0;
int retRead = 0;
int recvData = 0;
selectErr = m_socket->socket_RWable(R_MODE, time_out);
while(selectErr == 0)
{
retRead = SSL_read(m_ssl, buffer+recvData, buffer_size-recvData);
sslErr = SSL_get_error(m_ssl, retRead);
if(sslErr == SSL_ERROR_NONE)
{
cout<<"DEBUG 2 SSL_ERROR_NONE recv data="<<retRead<<endl;
recvData += retRead;
}
else if(sslErr == SSL_ERROR_WANT_READ)
{
cout<<"DEBUG 3 SSL_ERROR_WANT_READ select()"<<endl;
selectErr = m_socket->socket_RWable(R_MODE, time_out);
}
else if(sslErr == SSL_ERROR_WANT_WRITE)
{
cout<<"DEBUG 4 SSL_ERROR_WANT_WRITE select()"<<endl;
selectErr = m_socket->socket_RWable(W_MODE, time_out);
}
else if(sslErr == SSL_ERROR_ZERO_RETURN)
{
return -1;
}
else
return -1;
}
return recvData;
}
this is a output with connection to a POP3 server:
DEBUG 2 SSL_ERROR_NONE recv data=35
DEBUG 3 SSL_ERROR_WANT_READ select()
[S]+OK BLU0-POP617 POP3 server ready
total data -> 35
DEBUG 2 SSL_ERROR_NONE recv data=23
DEBUG 3 SSL_ERROR_WANT_READ select()
[S]+OK password required
total data -> 23
DEBUG 2 SSL_ERROR_NONE recv data=30
DEBUG 3 SSL_ERROR_WANT_READ select()
[S]+OK mailbox has 180 messages
total data -> 30
DEBUG 2 SSL_ERROR_NONE recv data=18
DEBUG 3 SSL_ERROR_WANT_READ select()
[S]+OK 180 12374432
total data -> 18
DEBUG 2 SSL_ERROR_NONE recv data=13
DEBUG 3 SSL_ERROR_WANT_READ select()
[S]+OK 1 23899
total data -> 13
DEBUG 2 SSL_ERROR_NONE recv data=5
DEBUG 3 SSL_ERROR_WANT_READ select()
DEBUG 2 SSL_ERROR_NONE recv data=8192
DEBUG 2 SSL_ERROR_NONE recv data=8192
DEBUG 3 SSL_ERROR_WANT_READ select()
DEBUG 3 SSL_ERROR_WANT_READ select()
DEBUG 2 SSL_ERROR_NONE recv data=7521
DEBUG 3 SSL_ERROR_WANT_READ select()
[S]total data -> 23910
Assuming you have already read the headers, for some reason SSL_read() hangs after reading the email message and returns SSL_WANT_READ. I solved this problem by looping through the message body one line at a time until I find the ending period. When I reach this line, I call SSL_pending(). Although there is no pending data, it prevents an endless loop where SSL_read() returns SSL_WANT_READ. However, I am looking for a better solution.
for(;;)
{
char *line = ReadLine(ssl, buf, sizeof(buf));
if(line != NULL)
{
if(*line == '.')
{
int pending = SSL_pending(ssl);
if(pending > 0)
{
int read = SSL_read(ssl,buf,pending);
}
}
}
}
This function reads one character at a time until it reaches an end of line character and returns the line.
char *ReadLine(SSL *ssl, char *buf, int size)
{
int i = 0;
char *ptr = NULL;
for (ptr = str; size > 1; size--, ptr++)
{
i = SSL_read(out, ptr, 1);
switch (SSL_get_error(out, i)){
case SSL_ERROR_NONE:
break;
case SSL_ERROR_ZERO_RETURN:
break;
case SSL_ERROR_WANT_READ:
break;
case SSL_ERROR_WANT_WRITE:
break;
default:
TRACE("SSL problem\r\n");
}
if (*ptr == '\n')
break;
if (*ptr == '\r'){
ptr--;
}
}
*ptr = '\0';
return(str);
}
The Win32 GetTimeZoneInformation function returns your systems local time zone as set up in the control panel. How do I get another specific time zone? Is there a call that does this?
Tony
According to this the information for the different timezones is stored in the registry, so you will have to retrieve the information from there and populate the TIME_ZONE_INFORMATION struct yourself.
Quote from the msdn article
Remarks
Settings for each time zone are stored in the following registry key:
HKEY_LOCAL_MACHINE
SOFTWARE
Microsoft
Windows NT
CurrentVersion
Time Zones
time_zone_name
code:
#include <stdio.h>
#include <windows.h>
#define pWin32Error(dwSysErr, sMsg )
typedef struct _REG_TZI_FORMAT
{
LONG Bias;
LONG StandardBias;
LONG DaylightBias;
SYSTEMTIME StandardDate;
SYSTEMTIME DaylightDate;
} REG_TZI_FORMAT;
#define REG_TIME_ZONES "SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Time Zones\\"
#define REG_TIME_ZONES_LEN (sizeof(REG_TIME_ZONES)-1)
#define REG_TZ_KEY_MAXLEN (REG_TIME_ZONES_LEN + (sizeof(((TIME_ZONE_INFORMATION*)0)->StandardName)/2) -1)
int GetTimeZoneInformationByName(TIME_ZONE_INFORMATION *ptzi, const char StandardName[]) {
int rc;
HKEY hkey_tz;
DWORD dw;
REG_TZI_FORMAT regtzi;
char tzsubkey[REG_TZ_KEY_MAXLEN+1] = REG_TIME_ZONES;
strncpy(tzsubkey + REG_TIME_ZONES_LEN, StandardName, sizeof(tzsubkey) - REG_TIME_ZONES_LEN);
if (tzsubkey[sizeof(tzsubkey)-1] != 0) {
fprintf(stderr, "timezone name too long\n");
return -1;
}
if (ERROR_SUCCESS != (dw = RegOpenKey(HKEY_LOCAL_MACHINE, tzsubkey, &hkey_tz))) {
fprintf(stderr, "failed to open: HKEY_LOCAL_MACHINE\\%s\n", tzsubkey);
pWin32Error(dw, "RegOpenKey() failed");
return -1;
}
rc = 0;
#define X(param, type, var) \
do if ((dw = sizeof(var)), (ERROR_SUCCESS != (dw = RegGetValueW(hkey_tz, NULL, param, type, NULL, &var, &dw)))) { \
fprintf(stderr, "failed to read: HKEY_LOCAL_MACHINE\\%s\\%S\n", tzsubkey, param); \
pWin32Error(dw, "RegGetValue() failed"); \
rc = -1; \
goto ennd; \
} while(0)
X(L"TZI", RRF_RT_REG_BINARY, regtzi);
X(L"Std", RRF_RT_REG_SZ, ptzi->StandardName);
X(L"Dlt", RRF_RT_REG_SZ, ptzi->DaylightName);
#undef X
ptzi->Bias = regtzi.Bias;
ptzi->DaylightBias = regtzi.DaylightBias;
ptzi->DaylightDate = regtzi.DaylightDate;
ptzi->StandardBias = regtzi.StandardBias;
ptzi->StandardDate = regtzi.StandardDate;
ennd:
RegCloseKey(hkey_tz);
return rc;
}
#define ZONE "Russian Standard Time"
int main(int argc, char* argv[])
{
DWORD dw;
TIME_ZONE_INFORMATION tzi;
dw = GetTimeZoneInformationByName(&tzi, ZONE);
if (dw != 0) return 1;
SYSTEMTIME lt;
SYSTEMTIME ut = {
2000, /*WORD wYear;*/
1, /*WORD wMonth;*/
0, /*WORD wDayOfWeek;*/
1, /*WORD wDay;*/
12, /*WORD wHour;*/
0, /*WORD wMinute;*/
0, /*WORD wSecond;*/
0 /*WORD wMilliseconds;*/
};
SystemTimeToTzSpecificLocalTime(&tzi, &ut, <);
printf("%d-%02d-%02d %02d:%02d:%02d UTC\n", ut.wYear, ut.wMonth, ut.wDay, ut.wHour, ut.wMinute, ut.wSecond);
printf("=\n");
printf("%d-%02d-%02d %02d:%02d:%02d Europe/Moscow\n", lt.wYear, lt.wMonth, lt.wDay, lt.wHour, lt.wMinute, lt.wSecond);
return 0;
}