Golang - Cannot infer T from interface implementation? [duplicate] - go

This question already has an answer here:
cannot infer V: infer type parameter from constraint implementation
(1 answer)
Closed 5 months ago.
Say I have the following code:
type Getter[T any] interface {
Get() T
}
type Wrapper[T any] struct {
a T
}
func (s Wrapper[T]) Get() T {
return s.a
}
Here, you can say that Wrapper[T] implements Getter[T] - since it implements Get() T which is the only requirement.
Now, I have a function that needs to take a Getter[T] in order to return the internal value...
func Return[T any](i Getter[T]) T {
return i.Get()
}
var s1 = Wrapper[int]{
a: 5,
}
Here, Return just gets the value inside - so the expectation is that when I pass in s1, I should get 5 in return.
var s2 = Return(s1) // type Wrapper[int] of s1 does not match Getter[T] (cannot infer T)
...instead, I get that error. Now, there is an easy workaround here...
func (s Wrapper[T]) Getter() Getter[T] {
return s
}
var s2 = Return(s1.Getter())
This ends up working. Getter() does nothing but return itself - functionally speaking, s1 and s1.Getter() should be identical here - and yet it doesn't work. T can be inferred in the method, but not as a parameter.
My question is this: Am I doing something wrong here - or is this just a part of Go? For this example to work, do I need to add a dummy method just to help the compiler - or am I missing something?

You do not need to add methods to Wrapper, but if type inference does not succeed (the compiler can't infer all types), you have to provide the types for the type parameters explicitly, like this:
var s2 = Return[int](s1)
The Return() function has a type parameter, if you provide the type for T explicitly (int here), then the compiler will be able to validate that s1 does indeed implement the Getter[int] interface. Try it on the Go Playground.

Related

go generics: how to declare a type parameter compatible with another type parameter

I'm looking for a way to declare type compatibility between type parameters in Go generics constraints.
More specifically, I need to say some type T is compatible with another type U. For instance, T is a pointer to a struct that implements the interface U.
Below is a concrete example of what I want to accomplish:
NOTE: Please, do not answer with alternative ways to implement "array prepend". I've only used it as a concrete application of the problem I'm looking to solve. Focusing on the specific example digresses the conversation.
func Prepend[T any](array []T, values ...T) []T {
if len(values) < 1 { return array }
result := make([]T, len(values) + len(array))
copy(result, values)
copy(result[len(values):], array)
return result
}
The above function can be called to append elements of a given type T to an array of the same type, so the code below works just fine:
type Foo struct{ x int }
func (self *Foo) String() string { return fmt.Sprintf("foo#%d", self.x) }
func grow(array []*Foo) []*Foo {
return Prepend(array, &Foo{x: len(array)})
}
If the array type is different than the elements being added (say, an interface implemented by the elements' type), the code fails to compile (as expected) with type *Foo of &Foo{…} does not match inferred type Base for T:
type Base interface { fmt.Stringer }
type Foo struct{ x int }
func (self *Foo) String() string { return fmt.Sprintf("foo#%d", self.x) }
func grow(array []Base) []Base {
return Prepend(array, &Foo{x: len(array)})
}
The intuitive solution to that is to change the type parameters for Prepend so that array and values have different, but compatible types. That's the part I don't know how to express in Go.
For instance, the code below doesn't work (as expected) because the types of array and values are independent of each other. Similar code would work with C++ templates since the compatibility is validated after template instantiation (similar to duck typing). The Go compiler gives out the error invalid argument: arguments to copy result (variable of type []A) and values (variable of type []T) have different element types A and T:
func Prepend[A any, T any](array []A, values ...T) []A {
if len(values) < 1 { return array }
result := make([]A, len(values) + len(array))
copy(result, values)
copy(result[len(values):], array)
return result
}
I've tried making the type T compatible with A with the constraint ~A, but Go doesn't like a type parameter used as type of a constraint, giving out the error type in term ~A cannot be a type parameter:
func Prepend[A any, T ~A](array []A, values ...T) []A {
What's the proper way to declare this type compatibility as generics constraints without resorting to reflection?
This is a limitation of Go's type parameter inference, which is the system that tries to automatically insert type parameters in cases where you don't define them explicitly. Try adding in the type parameter explicitly, and you'll see that it works. For example:
// This works.
func grow(array []Base) []Base {
return Prepend[Base](array, &Foo{x: len(array)})
}
You can also try explicitly converting the *Foo value to a Base interface. For example:
// This works too.
func grow(array []Base) []Base {
return Prepend(array, Base(&Foo{x: len(array)}))
}
Explanation
First, you should bear in mind that the "proper" use of type parameters is to always include them explicitly. The option to omit the type parameter list is considered a "nice to have", but not intended to cover all use cases.
From the blog post An Introduction To Generics:
Type inference in practice
The exact details of how type inference works are complicated, but using it is not: type inference either succeeds or fails. If it succeeds, type arguments can be omitted, and calling generic functions looks no different than calling ordinary functions. If type inference fails, the compiler will give an error message, and in those cases we can just provide the necessary type arguments.
In adding type inference to the language we’ve tried to strike a balance between inference power and complexity. We want to ensure that when the compiler infers types, those types are never surprising. We’ve tried to be careful to err on the side of failing to infer a type rather than on the side of inferring the wrong type. We probably have not gotten it entirely right, and we may continue to refine it in future releases. The effect will be that more programs can be written without explicit type arguments. Programs that don’t need type arguments today won’t need them tomorrow either.
In other words, type inference may improve over time, but you should expect it to be limited.
In this case:
// This works.
func grow(array []*Foo) []*Foo {
return Prepend(array, &Foo{x: len(array)})
}
It is relatively simple for the compiler to match that the argument types of []*Foo and *Foo match the pattern []T and ...T by substitutingT = *Foo.
So why does the plain solution you gave first not work?
// Why does this not work?
func grow(array []Base) []Base {
return Prepend(array, &Foo{x: len(array)})
}
To make []Base and *Foo match the pattern []T and ...T, just substituting T = *Foo or T = Base provides no apparent match. You have to apply the rule that *Foo is assignable to the type Base to see that T = Base works. Apparently the inference system doesn't go the extra mile to try to figure that out, so it fails here.

GoLang - Generics instead of interface to return different types [duplicate]

This question already has answers here:
How to assign or return generic T that is constrained by union?
(2 answers)
Closed 5 months ago.
I read a lot of docs but I couldn't find if I'm able to do it.
Is there a way to do something like this in Go without use an interface as return type?
Playground example
package main
import "fmt"
type Foo struct {
Id uint
FooField string
}
type Bar struct {
Id uint
BarField string
}
type Model interface {
Foo | Bar
}
func build[T Model](s string) T {
if s == "foo" {
fmt.Println(s)
return Foo{}
}
fmt.Println(s)
return Bar{}
}
func main() {
build("foo")
}
No, at least not how you've shown here.
Go is a statically typed language, meaning that the semantic data types of values do not depend on any dynamic values in the program.
Interfaces are not an exception to this, but an extension. From the language specification (abridged):
The static type (or just type) of a variable is the type given in its declaration. Variables of interface type also have a distinct dynamic type, which is the (non-interface) type of the value assigned to the variable at run time.
Here's an alternate version that would work.
func build[T Model]() T {
var x T
return x
}
func main() {
// VVV explicitly passing the type parameter, not a string
build[Foo]()
}
The reason why this is valid and yours isn't, is because now the return type only depends on the type parameter provided, which is always static. Type parameters are often omitted entirely when they can be inferred by the compiler, but in cases like this, it's most correct to list them explicitly.

How to use runtime.Object to create CRD generic functions in go [duplicate]

I have an interface Model, which is implemented by struct Person.
To get a model instance, I have the following helper functions:
func newModel(c string) Model {
switch c {
case "person":
return newPerson()
}
return nil
}
func newPerson() *Person {
return &Person{}
}
The above approach allows me to return a properly typed Person instance (can easily add new models later with same approach).
When I attempted to do something similar for returning a slice of models, I get an error. Code:
func newModels(c string) []Model {
switch c {
case "person":
return newPersons()
}
return nil
}
func newPersons() *[]Person {
var models []Person
return &models
}
Go complains with: cannot use newPersons() (type []Person) as type []Model in return argument
My goal is to return a slice of whatever model type is requested (whether []Person, []FutureModel, []Terminator2000, w/e). What am I missing, and how can I properly implement such a solution?
This is very similar to a question I just answered: https://stackoverflow.com/a/12990540/727643
The short answer is that you are correct. A slice of structs is not equal to a slice of an interface the struct implements.
A []Person and a []Model have different memory layouts. This is because the types they are slices of have different memory layouts. A Model is an interface value which means that in memory it is two words in size. One word for the type information, the other for the data. A Person is a struct whose size depends on the fields it contains. In order to convert from a []Person to a []Model, you will need to loop over the array and do a type conversion for each element.
Since this conversion is an O(n) operation and would result in a new slice being created, Go refuses to do it implicitly. You can do it explicitly with the following code.
models := make([]Model, len(persons))
for i, v := range persons {
models[i] = Model(v)
}
return models
And as dskinner pointed out, you most likely want a slice of pointers and not a pointer to a slice. A pointer to a slice is not normally needed.
*[]Person // pointer to slice
[]*Person // slice of pointers
Maybe this is an issue with your return type *[]Person, where it should actually be []*Person so to reference that each index of the slice is a reference to a Person, and where a slice [] is in itself a reference to an array.
Check out the following example:
package main
import (
"fmt"
)
type Model interface {
Name() string
}
type Person struct {}
func (p *Person) Name() string {
return "Me"
}
func NewPersons() (models []*Person) {
return models
}
func main() {
var p Model
p = new(Person)
fmt.Println(p.Name())
arr := NewPersons()
arr = append(arr, new(Person))
fmt.Println(arr[0].Name())
}
As Stephen already answered the question and you're a beginner I emphasize on giving advises.
A better way of working with go's interfaces is not to have a constructor returning
the interface as you might be used to from other languages, like java, but to have
a constructor for each object independently, as they implement the interface implicitly.
Instead of
newModel(type string) Model { ... }
you should do
newPerson() *Person { ... }
newPolitician() *Politician { ... }
with Person and Politician both implementing the methods of Model.
You can still use Person or Politician everywhere where a Model
is accepted, but you can also implement other interfaces.
With your method you would be limited to Model until you do a manual conversion to
another interface type.
Suppose I have a Person which implements the method Walk() and a Model implements ShowOff(), the following would not work straight forward:
newModel("person").ShowOff()
newModel("person").Walk() // Does not compile, Model has no method Walk
However this would:
newPerson().ShowOff()
newPerson().Walk()
As others have already answered, []T is a distinct type. I'd just like to add that a simple utility can be used to convert them generically.
import "reflect"
// Convert a slice or array of a specific type to array of interface{}
func ToIntf(s interface{}) []interface{} {
v := reflect.ValueOf(s)
// There is no need to check, we want to panic if it's not slice or array
intf := make([]interface{}, v.Len())
for i := 0; i < v.Len(); i++ {
intf[i] = v.Index(i).Interface()
}
return intf
}
Now, you can use it like this:
ToIntf([]int{1,2,3})
Types T and []T are distinct types and distinct are their methods as well, even when satisfying the same interface. IOW, every type satisfying Model must implement all of the Model's methods by itself - the method receiver can be only one specific type.
Even if Go's implementation allowed this, it's unfortunately unsound: You can't assign a []Person to a variable of type []Model because a []Model has different capabilities. For example, suppose we also have Animal which implements Model:
var people []Person = ...
var models []Model = people // not allowed in real Go
models[0] = Animal{..} // ???
var person Person = people[0] // !!!
If we allow line 2, then line 3 should also work because models can perfectly well store an Animal. And line 4 should still work because people stores Persons. But then we end up with a variable of type Person holding an Animal!
Java actually allows the equivalent of line 2, and it's widely considered a mistake. (The error is caught at run time; line 3 would throw an ArrayStoreException.)

slice of struct != slice of interface it implements?

I have an interface Model, which is implemented by struct Person.
To get a model instance, I have the following helper functions:
func newModel(c string) Model {
switch c {
case "person":
return newPerson()
}
return nil
}
func newPerson() *Person {
return &Person{}
}
The above approach allows me to return a properly typed Person instance (can easily add new models later with same approach).
When I attempted to do something similar for returning a slice of models, I get an error. Code:
func newModels(c string) []Model {
switch c {
case "person":
return newPersons()
}
return nil
}
func newPersons() *[]Person {
var models []Person
return &models
}
Go complains with: cannot use newPersons() (type []Person) as type []Model in return argument
My goal is to return a slice of whatever model type is requested (whether []Person, []FutureModel, []Terminator2000, w/e). What am I missing, and how can I properly implement such a solution?
This is very similar to a question I just answered: https://stackoverflow.com/a/12990540/727643
The short answer is that you are correct. A slice of structs is not equal to a slice of an interface the struct implements.
A []Person and a []Model have different memory layouts. This is because the types they are slices of have different memory layouts. A Model is an interface value which means that in memory it is two words in size. One word for the type information, the other for the data. A Person is a struct whose size depends on the fields it contains. In order to convert from a []Person to a []Model, you will need to loop over the array and do a type conversion for each element.
Since this conversion is an O(n) operation and would result in a new slice being created, Go refuses to do it implicitly. You can do it explicitly with the following code.
models := make([]Model, len(persons))
for i, v := range persons {
models[i] = Model(v)
}
return models
And as dskinner pointed out, you most likely want a slice of pointers and not a pointer to a slice. A pointer to a slice is not normally needed.
*[]Person // pointer to slice
[]*Person // slice of pointers
Maybe this is an issue with your return type *[]Person, where it should actually be []*Person so to reference that each index of the slice is a reference to a Person, and where a slice [] is in itself a reference to an array.
Check out the following example:
package main
import (
"fmt"
)
type Model interface {
Name() string
}
type Person struct {}
func (p *Person) Name() string {
return "Me"
}
func NewPersons() (models []*Person) {
return models
}
func main() {
var p Model
p = new(Person)
fmt.Println(p.Name())
arr := NewPersons()
arr = append(arr, new(Person))
fmt.Println(arr[0].Name())
}
As Stephen already answered the question and you're a beginner I emphasize on giving advises.
A better way of working with go's interfaces is not to have a constructor returning
the interface as you might be used to from other languages, like java, but to have
a constructor for each object independently, as they implement the interface implicitly.
Instead of
newModel(type string) Model { ... }
you should do
newPerson() *Person { ... }
newPolitician() *Politician { ... }
with Person and Politician both implementing the methods of Model.
You can still use Person or Politician everywhere where a Model
is accepted, but you can also implement other interfaces.
With your method you would be limited to Model until you do a manual conversion to
another interface type.
Suppose I have a Person which implements the method Walk() and a Model implements ShowOff(), the following would not work straight forward:
newModel("person").ShowOff()
newModel("person").Walk() // Does not compile, Model has no method Walk
However this would:
newPerson().ShowOff()
newPerson().Walk()
As others have already answered, []T is a distinct type. I'd just like to add that a simple utility can be used to convert them generically.
import "reflect"
// Convert a slice or array of a specific type to array of interface{}
func ToIntf(s interface{}) []interface{} {
v := reflect.ValueOf(s)
// There is no need to check, we want to panic if it's not slice or array
intf := make([]interface{}, v.Len())
for i := 0; i < v.Len(); i++ {
intf[i] = v.Index(i).Interface()
}
return intf
}
Now, you can use it like this:
ToIntf([]int{1,2,3})
Types T and []T are distinct types and distinct are their methods as well, even when satisfying the same interface. IOW, every type satisfying Model must implement all of the Model's methods by itself - the method receiver can be only one specific type.
Even if Go's implementation allowed this, it's unfortunately unsound: You can't assign a []Person to a variable of type []Model because a []Model has different capabilities. For example, suppose we also have Animal which implements Model:
var people []Person = ...
var models []Model = people // not allowed in real Go
models[0] = Animal{..} // ???
var person Person = people[0] // !!!
If we allow line 2, then line 3 should also work because models can perfectly well store an Animal. And line 4 should still work because people stores Persons. But then we end up with a variable of type Person holding an Animal!
Java actually allows the equivalent of line 2, and it's widely considered a mistake. (The error is caught at run time; line 3 would throw an ArrayStoreException.)

Adding a func never called improves behavior?

The code below produces undesirable
[20010101 20010102].
When uncommenting the String func it produces better (but not my implementation):
[{20010101 1.5} {20010102 2.5}]
However that String func is never called.
I see that Date in DateValue is anonymous and therefore func (Date) String is being used by DateValue.
So my questions are:
1) Is this a language issue, a fmt.Println implementation issue, or
something else? Note: if I switch from:
func (*DateValue) String() string
to
func (DateValue) String() string
my function is at least called and panic ensues. So if I really want my method called I could do that, but assume DateValue is really a very large object which I only want to pass by reference.
2) What is a good strategy for mixing anonymous fields with
functionality like Stringer and json encoding that use reflection
under the covers? For example adding a String or MarshalJSON method
for a type that happens to be used as an anonymous field can cause
strange behavior (like you only print or encode part of the whole).
package main
import (
"fmt"
"time"
)
type Date int64
func (d Date) String() string {
t := time.Unix(int64(d),0).UTC()
return fmt.Sprintf("%04d%02d%02d", t.Year(), int(t.Month()), t.Day())
}
type DateValue struct {
Date
Value float64
}
type OrderedValues []DateValue
/*
// ADD THIS BACK and note that this is never called but both pieces of
// DateValue are printed, whereas, without this only the date is printed
func (dv *DateValue) String() string {
panic("Oops")
return fmt.Sprintf("DV(%s,%f)", dv.Date, dv.Value )
}
*/
func main() {
d1, d2 := Date(978307200),Date(978307200+24*60*60)
ov1 := OrderedValues{{ d1, 1.5 }, { d2, 2.5 }}
fmt.Println(ov1)
}
It's because you've passed in a slice of DateValues and not DateValue pointers. Since you've defined the String method for *DataValue, *DateValue is what fulfills the Stringer interface. This also prevents DateValue from fulfilling the Stringer interface via its anonymous Date member, because only one of either the value type (DateValue) or the pointer type (*DateValue) can be used to fulfill an interface. So, when fmt.Println is printing the contents of the slice, it sees that the elements are not Stringers, and uses the default struct formatting instead of the method you defined, giving [{20010101 1.5} {20010102 2.5}].
You can either make OrderedValues a []*DateValue or define func (dv DateValue) String() string instead of the pointer version.
Based on what #SteveM said, I distilled it to a simpler test case:
package main
import "fmt"
type Fooable interface {
Foo()
}
type A int
func (a A) Foo() { }
type B struct {
A
}
// Uncomment the following method and it will print false
//func (b *B) Foo() { }
func main() {
var x interface{} = B{}
_, ok := x.(Fooable)
fmt.Println(ok) // prints true
}
In other words, the Foo method is not part of the method set of B when the Foo method for *B is defined.
From reading the spec, I don't see a clear explanation of what is happening. The closest part seems to be in the section on selectors:
For a value x of type T or *T where T is not an interface type, x.f
denotes the field or method at the shallowest depth in T where there
is such an f.
The only way I can see this explaining what is going on is if when it is looking for a method Foo at shallowest depth in B, it takes into consideration the methods for *B too, for some reason (even though we are considering type B not *B); and the Foo in *B is indeed shallower than the Foo in A, so it takes that one as the candidate; and then it sees that that Foo doesn't work, since it's in *B and not B, so it gets rid of Foo altogether (even though there is a valid one inherited from A).
If this is indeed what is going on, then I agree with the OP in that this is very counter-intuitive that adding a method to *B would have the reverse consequence of removing a method from B.
Maybe someone more familiar with Go can clarify this.

Resources