I am trying to write a function that returns true or false if a given string has exactly 6 consecutive characters with the same value. If the string has more or less than 6, it will return false:
I am not allowed to use lists, sets or import any packages. I am only restricted to while loops, for loops, and utilizing basic mathematical operations
Two example runs are shown below:
Enter a string: 367777776
True
Enter a string: 3677777777776
False
Note that although I entered numbers, it is actually a string within the function argument for example: consecutive('3777776')
I tried to convert the string into an ASCII table and then try and filter out the numbers there. However, I
def consecutive(x):
storage= ' '
acc=0
count=0
for s in x:
storage+= str(ord(s)) + ' '
acc+=ord(s)
if acc == acc:
count+=1
for s in x-1:
return count
My intention is to compare the previous character's ASCII code to the current character's ASCII code in the string. If the ASCII doesnt match, I will add an accumulator for it. The accumulator will list the number of duplicates. From there, I will implement an if-else statement to see if it is greater or less than 6 However, I have a hard time translating my thoughts into python code.
Can anyone assist me?
That's a pretty good start!
A few comments:
Variables storage and acc play the same role, and are a little more complicated than they have to be. All you want to know when you arrive at character s is whether or not s is identical to the previous character. So, you only need to store the previously seen character.
Condition acc == acc is always going to be True. I think you meant acc == s?
When you encounter an identical character, you correctly increase the count with count += 1. However, when we change characters, you should reset the count.
With these comments in mind, I fixed your code, then blanked out a few parts for you to fill. I've also renamed storage and acc to previous_char which I think is more explicit.
def has_6_consecutive(x):
previous_char = None
count = 0
for s in x:
if s == previous_char:
???
elif count == 6:
???
else:
???
previous_char = ???
???
You could use recursion. Loop over all the characters and for each one check to see of the next 6 are identical. If so, return true. If you get to the end of the array (or even within 6 characters of the end), return false.
For more info on recursion, check this out: https://www.programiz.com/python-programming/recursion
would something like this be allowed?
def consecF(n):
consec = 1
prev = n[0]
for i in n:
if i==prev:
consec+=1
else:
consec=1
if consec == 6:
return True
prev = i
return False
n = "12111123333221"
print(consecF(n))
You can try a two pointer approach, where the left pointer is fixed at the first instance of some digit and the right one is shifted as long as the digit is seen.
def consecutive(x):
left = 0
while left != len(x):
right = left
while right < len(x) and x[right] == x[left]:
right += 1
length = (right - 1) - left + 1 # from left to right - 1 inclusive, x[left] repeated
if length == 6: # found desired length
return True
left = right
return False # no segment found
tests = [
'3677777777776',
'367777776'
]
for test in tests:
print(f"{test}: {consecutive(test)}")
Output
3677777777776: False
367777776: True
You should store the current sequence of repeated chars.
def consecutive(x):
sequencechar = ' '
repetitions = 0
for ch in x:
if ch != sequencechar:
if repetitions == 6:
break
sequencechar = ch
repetitions = 1
else:
repetitions += 1
return repetitions == 6
If I could, I would not have given the entire solution, but this still is a simple problem. However one has to take care of some points.
As you see the current sequence is stored, and when the sequence is ended and a new starts, on having found a correct sequence it breaks out of the for loop.
Also after the for loop ends normally, the last sequence is checked (which was not done in the loop).
I'm attempting to return a count of the total number of matching and non-matching entries in a set of two ranges.
I'm trying to avoid looping over the array twice like this:
#expected output:
#inside: 421 | outside: 55
constant_range = 240..960
sample_range = 540..1015
sample_range_a = sample_range.to_a
def generate_range
inside = sample_range_a.select { |val| constant_range.include?(val) }.count
outside = sample_range_a.select { |val| !constant_range.include?(val) }.count
end
# I was thinking of a counter, but thought that would be even more ineffective
def generate_range
a = 0
b = 0
sample_range_a.select { |val| constant_range.include?(val) ? a++ : b++ }
end
I don't know if this is entirely your case, but if they're always number ranges with an interval of 1 and not any arbitrary array, the solution can be optimized to O(1), unlike the other methods using to_a that are at least O(n). In other words, if you have a BIG range, those array solutions would choke badly.
Assuming that you'll always use an ascending range of numbers with interval of 1, it means you can count them just by using size (count would be our enemy in this situation).
With that said, using simple math you can first check if the ranges may intersect, if not, just return 0. Otherwise, you can finally calculate the new range interval and get its size.
def range_intersection_count(x, y)
return 0 if x.last < y.first || y.last < x.first
([x.begin, y.begin].max..[x.max, y.max].min).size
end
This will count the number of elements that intersect in two ranges in O(1). You can test this code with something like
range_intersection_count(5000000..10000000000, 3000..1000000000000)
and then try the same input with the other methods and watch your program hang.
The final solution would look something like this:
constant_range = (240..960)
sample_range = (540..1015)
inside_count = range_intersection_count(constant_range, sample_range) # = 421
outside_count = sample_range.size - inside_count # = 55
constant_range = (240..960).to_a
sample_range = (540..1015).to_a
inside_count = (sample_range & constant_range).count #inside: 421
outside_count = sample_range.count - inside_count #outside: 55
You can use - (difference) in Ruby:
constant_range = (240..960).to_a
sample_range = (540..1015).to_a
puts (sample_range - constant_range).count # 55
I have a two-fold homework problem, Implement Karp-Rabin and run it on a test file and the second part:
For the hash values modulo q, explain why it is a bad idea to use q as a power of 2. Can you construct a terrible example e.g. for q=64
and n=15?
This is my implementation of the algorithm:
def karp_rabin(text, pattern):
# setup
alphabet = 'ACGT'
d = len(alphabet)
n = len(pattern)
d_n = d**n
q = 2**32-1
m = {char:i for i,char in enumerate(alphabet)}
positions = []
def kr_hash(s):
return sum(d**(n-i-1) * m[s[i]] for i in range(n))
def update_hash():
return d*text_hash + m[text[i+n-1]] - d_n * m[text[i-1]]
pattern_hash = kr_hash(pattern)
for i in range(0, len(text) - n + 1):
text_hash = update_hash() if i else kr_hash(text[i:n])
if pattern_hash % q == text_hash % q and pattern == text[i:i+n]:
positions.append(i)
return ' '.join(map(str, positions))
...The second part of the question is referring to this part of the code/algo:
pattern_hash = kr_hash(pattern)
for i in range(0, len(text) - n + 1):
text_hash = update_hash() if i else kr_hash(text[i:n])
# the modulo q used to check if the hashes are congruent
if pattern_hash % q == text_hash % q and pattern == text[i:i+n]:
positions.append(i)
I don't understand why it would be a bad idea to use q as a power of 2. I've tried running the algorithm on the test file provided(which is the genome of ecoli) and there's no discernible difference.
I tried looking at the formula for how the hash is derived (I'm not good at math) trying to find some common factors that would be really bad for powers of two but found nothing. I feel like if q is a power of 2 it should cause a lot of clashes for the hashes so you'd need to compare strings a lot more but I didn't find anything along those lines either.
I'd really appreciate help on this since I'm stumped. If someone wants to point out what I can do better in the first part (code efficiency, readability, correctness etc.) I'd also be thrilled to hear your input on that.
There is a problem if q divides some power of d, because then only a few characters contribute to the hash. For example in your code d=4, if you take q=64 only the last three characters determine the hash (d**3 = 64).
I don't really see a problem if q is a power of 2 but gcd(d,q) = 1.
Your implementation looks a bit strange because instead of
if pattern_hash % q == text_hash % q and pattern == text[i:i+n]:
you could also use
if pattern_hash == text_hash and pattern == text[i:i+n]:
which would be better because you get fewer collisions.
The Thue–Morse sequence has among its properties that its polynomial hash quickly becomes zero when a power of 2 is the hash module, for whatever polynomial base (d). So if you will try to search a short Thue-Morse sequence in a longer one, you will have a great lot of hash collisions.
For example, your code, slightly adapted:
def karp_rabin(text, pattern):
# setup
alphabet = '01'
d = 15
n = len(pattern)
d_n = d**n
q = 32
m = {char:i for i,char in enumerate(alphabet)}
positions = []
def kr_hash(s):
return sum(d**(n-i-1) * m[s[i]] for i in range(n))
def update_hash():
return d*text_hash + m[text[i+n-1]] - d_n * m[text[i-1]]
pattern_hash = kr_hash(pattern)
for i in range(0, len(text) - n + 1):
text_hash = update_hash() if i else kr_hash(text[i:n])
if pattern_hash % q == text_hash % q : #and pattern == text[i:i+n]:
positions.append(i)
return ' '.join(map(str, positions))
print(karp_rabin('0110100110010110100101100110100110010110011010010110100110010110', '0110100110010110'))
outputs a lot of positions, although only three of then are proper matches.
Note that I have dropped the and pattern == text[i:i+n] check. Obviously if you restore it, the result will be correct, but also it is obvious that the algorithm will do much more work checking this additional condition than for other q. In fact, because there are so many collisions, the whole idea of algorithm becomes not working: you could almost as effectively wrote a simple algorithm that checks every position for a match.
Also note that your implementation is quite strange. The whole idea of polynomial hashing is to take the modulo operation each time you compute the hash. Otherwise your pattern_hash and text_hash are very big numbers. In other languages this might mean arithmetic overflow, but in Python this will invoke big integer arithmetic, which is slow and once again loses the whole idea of the algorithm.
How do I find the second smallest value among a,b and c in Java?
Find-2nd-Smallest (n: array)
smallest : infinity
2nd-smallest : infinity
for each i in n
if i < smallest
2nd-smallest = smallest
smallest = i
else if i < 2nd-smallest
2nd-smallest = i
return 2nd-smallest
How would I make it work for (a,b,c)? I am very confused on how to get a value with only 3 letters.
The function in this pseudo-code you gave finds the smallest and second smallest values in an array.
Run it on the array {a,b,c}.
If there's only three values, you can get away with a very simple function (pseudo-code below):
def second_smallest (a,b,c):
if a < b:
if b < c:
return b
return c
if a < c:
return a
return c
Obviously that will become massively unwieldy if there are more than three numbers but, at that point (see YAGNI), you would convert it to a more generalised solution.
That would be along the lines of:
def second_smallest (list):
if list.size < 2:
throw error "not enough numbers"
if list[0] < list[1]:
first = list[0]
second = list[1]
else:
first = list[1]
second = list[0]
for each index 2 through list.size - 1 inclusive:
if list[index] < first:
second = first
first = list[index]
next for
if list[index] < second:
second = list[index]
return second
That's basically the same sort of logic in your question but with some pre-checks to avoid having to represent infinity (that would be okay if your types were floating point but not so useful for integers).
You should be aware that the generalised solution also solves the more specific problem, assuming your three integers are actually in a list structure of some sort. If you just have the three "naked" values and you're not specifically tasked with coping with the generalised case, I'd use the first block of pseudo-code above.
I'm checking if two strings a and b are permutations of each other, and I'm wondering what the ideal way to do this is in Python. From the Zen of Python, "There should be one -- and preferably only one -- obvious way to do it," but I see there are at least two ways:
sorted(a) == sorted(b)
and
all(a.count(char) == b.count(char) for char in a)
but the first one is slower when (for example) the first char of a is nowhere in b, and the second is slower when they are actually permutations.
Is there any better (either in the sense of more Pythonic, or in the sense of faster on average) way to do it? Or should I just choose from these two depending on which situation I expect to be most common?
Here is a way which is O(n), asymptotically better than the two ways you suggest.
import collections
def same_permutation(a, b):
d = collections.defaultdict(int)
for x in a:
d[x] += 1
for x in b:
d[x] -= 1
return not any(d.itervalues())
## same_permutation([1,2,3],[2,3,1])
#. True
## same_permutation([1,2,3],[2,3,1,1])
#. False
"but the first one is slower when (for example) the first char of a is nowhere in b".
This kind of degenerate-case performance analysis is not a good idea. It's a rat-hole of lost time thinking up all kinds of obscure special cases.
Only do the O-style "overall" analysis.
Overall, the sorts are O( n log( n ) ).
The a.count(char) for char in a solution is O( n 2 ). Each count pass is a full examination of the string.
If some obscure special case happens to be faster -- or slower, that's possibly interesting. But it only matters when you know the frequency of your obscure special cases. When analyzing sort algorithms, it's important to note that a fair number of sorts involve data that's already in the proper order (either by luck or by a clever design), so sort performance on pre-sorted data matters.
In your obscure special case ("the first char of a is nowhere in b") is this frequent enough to matter? If it's just a special case you thought of, set it aside. If it's a fact about your data, then consider it.
heuristically you're probably better to split them off based on string size.
Pseudocode:
returnvalue = false
if len(a) == len(b)
if len(a) < threshold
returnvalue = (sorted(a) == sorted(b))
else
returnvalue = naminsmethod(a, b)
return returnvalue
If performance is critical, and string size can be large or small then this is what I'd do.
It's pretty common to split things like this based on input size or type. Algorithms have different strengths or weaknesses and it would be foolish to use one where another would be better... In this case Namin's method is O(n), but has a larger constant factor than the O(n log n) sorted method.
I think the first one is the "obvious" way. It is shorter, clearer, and likely to be faster in many cases because Python's built-in sort is highly optimized.
Your second example won't actually work:
all(a.count(char) == b.count(char) for char in a)
will only work if b does not contain extra characters not in a. It also does duplicate work if the characters in string a repeat.
If you want to know whether two strings are permutations of the same unique characters, just do:
set(a) == set(b)
To correct your second example:
all(str1.count(char) == str2.count(char) for char in set(a) | set(b))
set() objects overload the bitwise OR operator so that it will evaluate to the union of both sets. This will make sure that you will loop over all the characters of both strings once for each character only.
That said, the sorted() method is much simpler and more intuitive, and would be what I would use.
Here are some timed executions on very small strings, using two different methods:
1. sorting
2. counting (specifically the original method by #namin).
a, b, c = 'confused', 'unfocused', 'foncused'
sort_method = lambda x,y: sorted(x) == sorted(y)
def count_method(a, b):
d = {}
for x in a:
d[x] = d.get(x, 0) + 1
for x in b:
d[x] = d.get(x, 0) - 1
for v in d.itervalues():
if v != 0:
return False
return True
Average run times of the 2 methods over 100,000 loops are:
non-match (string a and b)
$ python -m timeit -s 'import temp' 'temp.sort_method(temp.a, temp.b)'
100000 loops, best of 3: 9.72 usec per loop
$ python -m timeit -s 'import temp' 'temp.count_method(temp.a, temp.b)'
10000 loops, best of 3: 28.1 usec per loop
match (string a and c)
$ python -m timeit -s 'import temp' 'temp.sort_method(temp.a, temp.c)'
100000 loops, best of 3: 9.47 usec per loop
$ python -m timeit -s 'import temp' 'temp.count_method(temp.a, temp.c)'
100000 loops, best of 3: 24.6 usec per loop
Keep in mind that the strings used are very small. The time complexity of the methods are different, so you'll see different results with very large strings. Choose according to your data, you may even use a combination of the two.
Sorry that my code is not in Python, I have never used it, but I am sure this can be easily translated into python. I believe this is faster than all the other examples already posted. It is also O(n), but stops as soon as possible:
public boolean isPermutation(String a, String b) {
if (a.length() != b.length()) {
return false;
}
int[] charCount = new int[256];
for (int i = 0; i < a.length(); ++i) {
++charCount[a.charAt(i)];
}
for (int i = 0; i < b.length(); ++i) {
if (--charCount[b.charAt(i)] < 0) {
return false;
}
}
return true;
}
First I don't use a dictionary but an array of size 256 for all the characters. Accessing the index should be much faster. Then when the second string is iterated, I immediately return false when the count gets below 0. When the second loop has finished, you can be sure that the strings are a permutation, because the strings have equal length and no character was used more often in b compared to a.
Here's martinus code in python. It only works for ascii strings:
def is_permutation(a, b):
if len(a) != len(b):
return False
char_count = [0] * 256
for c in a:
char_count[ord(c)] += 1
for c in b:
char_count[ord(c)] -= 1
if char_count[ord(c)] < 0:
return False
return True
I did a pretty thorough comparison in Java with all words in a book I had. The counting method beats the sorting method in every way. The results:
Testing against 9227 words.
Permutation testing by sorting ... done. 18.582 s
Permutation testing by counting ... done. 14.949 s
If anyone wants the algorithm and test data set, comment away.
First, for solving such problems, e.g. whether String 1 and String 2 are exactly the same or not, easily, you can use an "if" since it is O(1).
Second, it is important to consider that whether they are only numerical values or they can be also words in the string. If the latter one is true (words and numerical values are in the string at the same time), your first solution will not work. You can enhance it by using "ord()" function to make it ASCII numerical value. However, in the end, you are using sort; therefore, in the worst case your time complexity will be O(NlogN). This time complexity is not bad. But, you can do better. You can make it O(N).
My "suggestion" is using Array(list) and set at the same time. Note that finding a value in Array needs iteration so it's time complexity is O(N), but searching a value in set (which I guess it is implemented with HashTable in Python, I'm not sure) has O(1) time complexity:
def Permutation2(Str1, Str2):
ArrStr1 = list(Str1) #convert Str1 to array
SetStr2 = set(Str2) #convert Str2 to set
ArrExtra = []
if len(Str1) != len(Str2): #check their length
return False
elif Str1 == Str2: #check their values
return True
for x in xrange(len(ArrStr1)):
ArrExtra.append(ArrStr1[x])
for x in xrange(len(ArrExtra)): #of course len(ArrExtra) == len(ArrStr1) ==len(ArrStr2)
if ArrExtra[x] in SetStr2: #checking in set is O(1)
continue
else:
return False
return True
Go with the first one - it's much more straightforward and easier to understand. If you're actually dealing with incredibly large strings and performance is a real issue, then don't use Python, use something like C.
As far as the Zen of Python is concerned, that there should only be one obvious way to do things refers to small, simple things. Obviously for any sufficiently complicated task, there will always be zillions of small variations on ways to do it.
In Python 3.1/2.7 you can just use collections.Counter(a) == collections.Counter(b).
But sorted(a) == sorted(b) is still the most obvious IMHO. You are talking about permutations - changing order - so sorting is the obvious operation to erase that difference.
This is derived from #patros' answer.
from collections import Counter
def is_anagram(a, b, threshold=1000000):
"""Returns true if one sequence is a permutation of the other.
Ignores whitespace and character case.
Compares sorted sequences if the length is below the threshold,
otherwise compares dictionaries that contain the frequency of the
elements.
"""
a, b = a.strip().lower(), b.strip().lower()
length_a, length_b = len(a), len(b)
if length_a != length_b:
return False
if length_a < threshold:
return sorted(a) == sorted(b)
return Counter(a) == Counter(b) # Or use #namin's method if you don't want to create two dictionaries and don't mind the extra typing.
This is an O(n) solution in Python using hashing with dictionaries. Notice that I don't use default dictionaries because the code can stop this way if we determine the two strings are not permutations after checking the second letter for instance.
def if_two_words_are_permutations(s1, s2):
if len(s1) != len(s2):
return False
dic = {}
for ch in s1:
if ch in dic.keys():
dic[ch] += 1
else:
dic[ch] = 1
for ch in s2:
if not ch in dic.keys():
return False
elif dic[ch] == 0:
return False
else:
dic[ch] -= 1
return True
This is a PHP function I wrote about a week ago which checks if two words are anagrams. How would this compare (if implemented the same in python) to the other methods suggested? Comments?
public function is_anagram($word1, $word2) {
$letters1 = str_split($word1);
$letters2 = str_split($word2);
if (count($letters1) == count($letters2)) {
foreach ($letters1 as $letter) {
$index = array_search($letter, $letters2);
if ($index !== false) {
unset($letters2[$index]);
}
else { return false; }
}
return true;
}
return false;
}
Here's a literal translation to Python of the PHP version (by JFS):
def is_anagram(word1, word2):
letters2 = list(word2)
if len(word1) == len(word2):
for letter in word1:
try:
del letters2[letters2.index(letter)]
except ValueError:
return False
return True
return False
Comments:
1. The algorithm is O(N**2). Compare it to #namin's version (it is O(N)).
2. The multiple returns in the function look horrible.
This version is faster than any examples presented so far except it is 20% slower than sorted(x) == sorted(y) for short strings. It depends on use cases but generally 20% performance gain is insufficient to justify a complication of the code by using different version for short and long strings (as in #patros's answer).
It doesn't use len so it accepts any iterable therefore it works even for data that do not fit in memory e.g., given two big text files with many repeated lines it answers whether the files have the same lines (lines can be in any order).
def isanagram(iterable1, iterable2):
d = {}
get = d.get
for c in iterable1:
d[c] = get(c, 0) + 1
try:
for c in iterable2:
d[c] -= 1
return not any(d.itervalues())
except KeyError:
return False
It is unclear why this version is faster then defaultdict (#namin's) one for large iterable1 (tested on 25MB thesaurus).
If we replace get in the loop by try: ... except KeyError then it performs 2 times slower for short strings i.e. when there are few duplicates.
In Swift (or another languages implementation), you could look at the encoded values ( in this case Unicode) and see if they match.
Something like:
let string1EncodedValues = "Hello".unicodeScalars.map() {
//each encoded value
$0
//Now add the values
}.reduce(0){ total, value in
total + value.value
}
let string2EncodedValues = "oellH".unicodeScalars.map() {
$0
}.reduce(0) { total, value in
total + value.value
}
let equalStrings = string1EncodedValues == string2EncodedValues ? true : false
You will need to handle spaces and cases as needed.
def matchPermutation(s1, s2):
a = []
b = []
if len(s1) != len(s2):
print 'length should be the same'
return
for i in range(len(s1)):
a.append(s1[i])
for i in range(len(s2)):
b.append(s2[i])
if set(a) == set(b):
print 'Permutation of each other'
else:
print 'Not a permutation of each other'
return
#matchPermutaion('rav', 'var') #returns True
matchPermutaion('rav', 'abc') #returns False
Checking if two strings are permutations of each other in Python
# First method
def permutation(s1,s2):
if len(s1) != len(s2):return False;
return ' '.join(sorted(s1)) == ' '.join(sorted(s2))
# second method
def permutation1(s1,s2):
if len(s1) != len(s2):return False;
array = [0]*128;
for c in s1:
array[ord(c)] +=1
for c in s2:
array[ord(c)] -=1
if (array[ord(c)]) < 0:
return False
return True
How about something like this. Pretty straight-forward and readable. This is for strings since the as per the OP.
Given that the complexity of sorted() is O(n log n).
def checkPermutation(a,b):
# input: strings a and b
# return: boolean true if a is Permutation of b
if len(a) != len(b):
return False
else:
s_a = ''.join(sorted(a))
s_b = ''.join(sorted(b))
if s_a == s_b:
return True
else:
return False
# test inputs
a = 'sRF7w0qbGp4fdgEyNlscUFyouETaPHAiQ2WIxzohiafEGJLw03N8ALvqMw6reLN1kHRjDeDausQBEuIWkIBfqUtsaZcPGoqAIkLlugTxjxLhkRvq5d6i55l4oBH1QoaMXHIZC5nA0K5KPBD9uIwa789sP0ZKV4X6'
b = 'Vq3EeiLGfsAOH2PW6skMN8mEmUAtUKRDIY1kow9t1vIEhe81318wSMICGwf7Rv2qrLrpbeh8bh4hlRLZXDSMyZJYWfejLND4u9EhnNI51DXcQKrceKl9arWqOl7sWIw3EBkeu7Fw4TmyfYwPqCf6oUR0UIdsAVNwbyyiajtQHKh2EKLM1KlY6NdvQTTA7JKn6bLInhFvwZ4yKKbzkgGhF3Oogtnmzl29fW6Q2p0GPuFoueZ74aqlveGTYc0zcXUJkMzltzohoRdMUKP4r5XhbsGBED8ReDbL3ouPhsFchERvvNuaIWLUCY4gl8OW06SMuvceZrCg7EkSFxxprYurHz7VQ2muxzQHj7RG2k3khxbz2ZAhWIlBBtPtg4oXIQ7cbcwgmBXaTXSBgBe3Y8ywYBjinjEjRJjVAiZkWoPrt8JtZv249XiN0MTVYj0ZW6zmcvjZtRn32U3KLMOdjLnRFUP2I3HJtp99uVlM9ghIpae0EfC0v2g78LkZE1YAKsuqCiiy7DVOhyAZUbOrRwXOEDHxUyXwCmo1zfVkPVhwysx8HhH7Iy0yHAMr0Tb97BqcpmmyBsrSgsV1aT3sjY0ctDLibrxbRXBAOexncqB4BBKWJoWkQwUZkFfPXemZkWYmE72w5CFlI6kuwBQp27dCDZ39kRG7Txs1MbsUnRnNHBy1hSOZvTQRYZPX0VmU8SVGUqzwm1ECBHZakQK4RUquk3txKCqbDfbrNmnsEcjFaiMFWkY3Esg6p3Mm41KWysTpzN6287iXjgGSBw6CBv0hH635WiZ0u47IpUD5mY9rkraDDl5sDgd3f586EWJdKAaou3jR7eYU7YuJT3RQVRI0MuS0ec0xYID3WTUI0ckImz2ck7lrtfnkewzRMZSE2ANBkEmg2XAmwrCv0gy4ExW5DayGRXoqUv06ZLGCcBEiaF0fRMlinhElZTVrGPqqhT03WSq4P97JbXA90zUxiHCnsPjuRTthYl7ZaiVZwNt3RtYT4Ff1VQ5KXRwRzdzkRMsubBX7YEhhtl0ZGVlYiP4N4t00Jr7fB4687eabUqK6jcUVpXEpTvKDbj0JLcLYsneM9fsievUz193f6aMQ5o5fm4Ilx3TUZiX4AUsoyd8CD2SK3NkiLuR255BDIA0Zbgnj2XLyQPiJ1T4fjStpjxKOTzsQsZxpThY9Fvjvoxcs3HAiXjLtZ0TSOX6n4ZLjV3TdJMc4PonwqIb3lAndlTMnuzEPof2dXnpexoVm5c37XQ7fBkoMBJ4ydnW25XKYJbkrueRDSwtJGHjY37dob4jPg0axM5uWbqGocXQ4DyiVm5GhvuYX32RQaOtXXXw8cWK6JcSUnlP1gGLMNZEGeDXOuGWiy4AJ7SH93ZQ4iPgoxdfCuW0qbsLKT2HopcY9dtBIRzr91wnES9lDL49tpuW77LSt5dGA0YLSeWAaZt9bDrduE0gDZQ2yX4SDvAOn4PMcbFRfTqzdZXONmO7ruBHHb1tVFlBFNc4xkoetDO2s7mpiVG6YR4EYMFIG1hBPh7Evhttb34AQzqImSQm1gyL3O7n3p98Kqb9qqIPbN1kuhtW5mIbIioWW2n7MHY7E5mt0'
print(checkPermutation(a, b)) #optional
def permute(str1,str2):
if sorted(str1) == sorted(str2):
return True
else:
return False
str1="hello"
str2='olehl'
a=permute(str1,str2)
print(a
from collections import defaultdict
def permutation(s1,s2):
h = defaultdict(int)
for ch in s1:
h[ch]+=1
for ch in s2:
h[ch]-=1
for key in h.keys():
if h[key]!=0 or len(s1)!= len(s2):
return False
return True
print(permutation("tictac","tactic"))