Which structure for fast split / removeTail and insert operation - algorithm

I'm looking for sorted structure which allows fast split / removeTail and insert(key) operations. These are only 3 operations I need. I know that there is relation like 9:1 for removeTail(k) to insert(k) queries. Additionally, most of the removeTail(k) will remove 0 elements, occasionally 10-50.
I am considering Red-Black / AVL Tree, Treap, SkipList and simple sorted array.
AVL Tree - simpler split operations than RBT, but maybe it makes no sense to split whole tree, when occasionally I have to remove just 10-50 elements?
Treap - easy splits but maybe no worth it as above?
SkipList - too high insert overhead anyway
Sorted Array - on insert binary search for index and then shift all elements to right, removeTail(k) pretty fast, just go from end until k >= array[i]
Splay Tree - ?
I'm going to benchmark these all, but maybe you can point out some additional structures which are worthwhile to conclude in benchmarks?
Structure will have from 10 to 50 000 elements - perhaps I will implement it this way, that it transforms from some simple array to tree when elements exceeds some threshold. Basically it depends, some clients have only few elements, others a lot of them up to about 50 000
Trim ratio (when removeTail(k) returns something) to "do nothing" (k greater than max) is like 1:500

Related

Sorted structure with fast insertion and head/floor removal many elements

What is the fastest sorted structure for insertions and removal many elements higher/lesser or equal to given value? I will describe it in few steps:
Starting point = [1,2,3]
New value 5 = [1,2,3,5]
Next new value 4 = [1,2,3,4,5]
Next new value 4 again = [1,2,3,4,4,5] (4's are treated the same)
removeTail(4) = [1,2,3] (it returns removed elements: [4,4,5]
removeHead(2) = [3] (it returns removed elements: [1,2]
The structure will be accessed from single thread, memory consumption doesn't matter. I would like to achive the fastest (at least O(logN)) complexity. I wonder if I should use some B-Trees but it seems like too much re-balancing overhead so maybe instead I should try skip-list?
If you are OK with likely O(logn) performance for each of these operations, a simple probabilistic skip list sounds perfect here.
Insertion and deletions are native to Skip List.
RemoveTail() and RemoveHead() are simply finding the element, and trimming everything "above it" (and by above it, I mean the actual path you used to find the element) to the left or to the right. Each such operation is O(logn) on average, as you touch only the nodes in the path (and maybe one adjacent for each of them).
If you want deterministic - this could be done as well, but will be more complicated to remove elements and rebalance while keeping deterministic structure, though not impossible.

Updating & Querying all elements in array >= X where X is variable fast

Formally we are given an array with some initial values. Then we have 3 types of Queries :-
Point updates : Increment by 1 at a given position
Range Queries : To count number of elements>=x where x is taken as input
Range Updates : To decrement by 1 all elements>=x, where x is given as input.
N=105 , Q=105 (number of elements in array, number of Queries resp.)
I tried doing this with segment Tree but operations 2,3 can be worse than O(n) even as we don't know which 'range' is to be updated exactly so we may end up traversing whole of segment tree.
NOTE : I wish to clear that if we need to do all 3 operations in logarithmic Worst case ,ie O(log n) ,cause only then we can do this fast , linear approach doesn't works as Q=10^5 n N=10^5 , so worst case could be O(n^2) ,ie 10^10 operation which is clearly not feasible.
Given that you're talking about 105 items, and don't mention needing to add or remove items, it seems to me that the obvious data structure would be a simple sorted vector.
Operation complexities:
point update: O(1) + O(m) (where m is the number of subsequent elements equal to the value before the update).
Range query: O(log n) + O(m) (where n is start of range, m is elements in range).
Range update (same as range query).
It's a little difficult to be sure what "fast" means to you, but the fastest theoretically possible for 1 is O(1), so we're already within some constant factor of optimal.
For 2 and 3, even if we could do the find with constant complexity, we're pretty much stuck with O(m) for the update. Since Log2100000 = ~16.6, most of the time the O(m) term is going to dominate (i.e., the update part will involve as many operations as the search unless the given x is one of the last 17 items in the collection.
I doubt there's any point for this small of a collection, but if you might have to deal with a substantially larger collection and the items in the collection are reasonably predictably distributed, it might be worth considering doing an interpolating search instead of a binary search. With predictable distribution this reduces the expected number of comparisons to approximately O(log log n). In this case, that would be roughly 4 (but normally with a higher constant factor). This might be a win for 105 items, but then again it might not. If you might have to deal with a collection of (say) 108 items or more, it would be much more likely to be a substantial win.
The following may not be optimal, but is the best I could think of tonight.
Let's start by trying to turn the problem sideways. Instead of a map from indices to values, let's consider a map from values to sets of indices. A point update now involves removing an index from one set and adding it to another. A range update involves either simply moving an index set from one value to another or taking the union of two index sets. A range query involves folding over the sets corresponding to the values in range. A quick peek at Wikipedia suggests a traditional disjoint-set data structure is really great for set unions. Unfortunately, it's no good at all for removing an element from a set.
Fortunately, there is a newer data structure supporting union-find with constant time deletion! That takes care of both point updates and range updates quite naturally. Range queries, unfortunately, will require checking all array elements, even if very few elements are in range.

Radix Tries, Tries and Ternary Search Tries

I'm currently trying to get my head around the variations of Trie and was wondering if anyone would be able to clarify a couple of points. (I got quite confused with the answer to this question Tries versus ternary search trees for autocomplete?, especially within the first paragraph).
From what I have read, is the following correct? Supposing we have stored n elements in the data structures, and L is the length of the string we are searching for:
A Trie stores its keys at the leaf nodes, and if we have a positive hit for the search then this means that it will perform O(L) comparisons. For a miss however, the average performance is O(log2(n)).
Similarly, a Radix tree (with R = 2^r) stores the keys at the leaf nodes and will perform O(L) comparisons for a positive hit. However misses will be quicker, and occur on average in O(logR(n)).
A Ternary Search Trie is essentially a BST with operations <,>,= and with a character stored in every node. Instead of comparing the whole key at a node (as with BST), we only compare a character of the key at that node. Overall, supposing our alphabet size is A, then if there is a hit we must perform (at most) O(L*A) = O(L) comparisons. If there is not a hit, on average we have O(log3(n)).
With regards to the Radix tree, if for example our alphabet is {0,1} and we set R = 4, for a binary string 0101 we would only need two comparisons right? Hence if the size of our alphabet is A, we would actually only perform L * (A / R) comparisons? If so then I guess this just becomes O(L), but I was curious if this was correct reasoning.
Thanks for any help you folks can give!

What is the fastest way of updating an ordered array of numbers?

I need to calculate a 1d histogram that must be dynamically maintained and looked up frequently. One idea I had involves keeping an ordered array with the data (cause thus I can determine percentiles in O(1), and this suffices for quickly finding a histogram with non-uniform bins with the exactly same amount of points inside each bin).
So, is there a way that is less than O(N) to insert a number into an ordered array while keeping it ordered?
I guess the answer is very well known but I don't know a lot about algorithms (physicists doing numerical calculations rarely do).
In the general case, you could use a more flexible tree-like data structure. This would allow access, insertion and deletion in O(log) time and is also relatively easy to get ready-made from a library (ex.: C++'s STL map).
(Or a hash map...)
An ordered array with binary search does the same things as a tree, but is more rigid. It might probably be faster for acess and memory use but you will pay when having to insert or delete things in the middle (O(n) cost).
Note, however, that an ordered array might be enough for you: if your data points are often the same, you can mantain a list of pairs {key, count}, ordered by key, being able to quickly add another instance of an existing item (but still having to do more work to add a new item)
You could use binary search. This is O(log(n)).
If you like to insert number x, then take the number in the middle of your array and compare it to x. if x is smaller then then take the number in the middle of the first half else the number in the middle of the second half and so on.
You can perform insertions in O(1) time if you rearrange your array as a bunch of linked-lists hanging off of each element:
keys = Array([0][1][2][3][4]......)
a c b e f . .
d g i . . .
h j .
|__|__|__|__|__|__|__/linked lists
There's also the strategy of keeping two datastructures at the same time, if your update workload supports it without increasing time-complexity of common operations.
So, is there a way that is less than O(N) to insert a number into an
ordered array while keeping it ordered?
Yes, you can use an array to implement a binary search tree using arrays and do the insertion in O(log n) time. How?
Keep index 0 empty; index 1 = root; if node is the left child of parent node, index of node = 2 * index of parent node; if node is the right child of parent node, index of node = 2 * index of parent node + 1.
Insertion will thus be O(log n). Unfortunately, you might notice that the binary search tree for an ordered list might degenerate to a linear search if you don't balance the tree i.e. O(n), which is pointless. Here, you may have to implement a red black tree to keep the height balanced. However, this is quite complicated, BUT insertion can be done with arrays in O(log n). Note that the array elements will no longer be ints; instead, they'll have to be objects with a colour attribute.
I wouldn't recommend it.
Any particular reason this demands an array? You need an data structure which keeps data ordered and allows you to insert quickly. Why not a binary search tree? Or better still, a red black tree. In C++, you could use the Set structure in the Standard template library which is implemented as a red black tree. Gives you O(log(n)) insertion time and the ability to iterate over it like an array.

Efficient way to handle adding and removing items by bitwise And

So, suppose you have a collection of items. Each item has an identifier which can be represented using a bitfield. As a simple example, suppose your collection is:
0110, 0111, 1001, 1011, 1110, 1111
So, you then want to implement a function, Remove(bool bitval, int position). For example, a call to Remove(0, 2) would remove all items where index 2(i.e. 3rd bit) was 0. In this case, that would be 1001, only. Remove(1,1) would remove 1110, 1111, 0111, and 0110. It is trivial to come up with an O(n) collection where this is possible (just use a linked list), with n being the number of items in the collection. In general the number of items to be removed is going to be O(n) (assuming a given bit has a ≥ c% chance of being 1 and a ≥ c% chance of being 0, where c is some constant > 0), so "better" algorithms which somehow are O(l), with l being the number of items being removed, are unexciting.
Is it possible to define a data structure where the average (or better yet, worst case) removal time is better than O(n)? A binary tree can do pretty well (just remove all left/right branches at the height m, where m is the index being tested), but I'm wondering if there is any way to do better (and quite honestly, I'm not sure how to removing all left or right branches at a particular height in an efficient manner). Alternatively, is there a proof that doing better is not possible?
Edit: I'm not sure exactly what I'm expecting in terms of efficiency (sorry Arno), but a basic explanation of it's possible application is thus: Suppose we are working with a binary decision tree. Such a tree could be used for a game tree or a puzzle solver or whatever. Further suppose the tree is small enough that we can fit all of the leaf nodes into memory. Each such node is basically just a bitfield listing all of the decisions. Now, if we want to prune arbitrary decisions from this tree, one method would be to just jump to the height where a particular decision is made and prune the left or right side of every node (left meaning one decision, right meaning the other). Normally in a decision tree you only want to prune subtree at a time (since the parent of that subtree is different from the parent of other subtrees and thus the decision which should be pruned in one subtree should not be pruned from others), but in some types of situations this may not be the case. Further, you normally only want to prune everything below a particular node, but in this case you'll be leaving some stuff below the node but also pruning below other nodes in the tree.
Anyhow, this is somewhat of a question based on curiousity; I'm not sure it's practical to use any results, but am interested in what people have to say.
Edit:
Thinking about it further, I think the tree method is actually O(n / logn), assuming it's reasonably dense. Proof:
Suppose you have a binary tree with n items. It's height is log(n). Removing half the bottom will require n/2 removals. Removing the half the row above will require n/4. The sum of operations for each row is n-1. So the average number of removals is n-1 / log(n).
Provided the length of your bitfields is limited, the following may work:
First, represent the bitfields that are in the set as an array of booleans, so in your case (4 bit bitfields), new bool[16];
Transform this array of booleans into a bitfield itself, so a 16-bit bitfield in this case, where each bit represents whether the bitfield corresponding to its index is included
Then operations become:
Remove(0, 0) = and with bitmask 1010101010101010
Remove(1, 0) = and with bitmask 0101010101010101
Remove(0, 2) = and with bitmask 1111000011110000
Note that more complicated 'add/remove' operations could then also be added as O(1) bit-logic.
The only down-side is that extra work is needed to interpret the resulting 16-bit bitfield back into a set of values, but with lookup arrays that might not turn out too bad either.
Addendum:
Additional down-sides:
Once the size of an integer is exceeded, every added bit to the original bit-fields will double the storage space. However, this is not much worse than a typical scenario using another collection where you have to store on average half the possible bitmask values (provided the typical scenario doesn't store far less remaining values).
Once the size of an integer is exceeded, every added bit also doubles the number of 'and' operations needed to implement the logic.
So basically, I'd say if your original bitfields are not much larger than a byte, you are likely better off with this encoding, beyond that you're probably better off with the original strategy.
Further addendum:
If you only ever execute Remove operations, which over time thins out the set state-space further and further, you may be able to stretch this approach a bit further (no pun intended) by making a more clever abstraction that somehow only keeps track of the int values that are non-zero. Detecting zero values may not be as expensive as it sounds either if the JIT knows what it's doing, because a CPU 'and' operation typically sets the 'zero' flag if the result is zero.
As with all performance optimizations, this one'd need some measurement to determine if it is worthwile.
If each decision bit and position are listed as objects, {bit value, k-th position}, you would end up with an array of length 2*k. If you link to each of these array positions from your item, represented as a linked list (which are of length k), using a pointer to the {bit, position} object as the node value, you can "invalidate" a bunch of items by simply deleting the {bit, position} object. This would require you, upon searching the list of items, to find "complete" items (it makes search REALLY slow?).
So something like:
[{0,0}, {1,0}, {0,1}, {1, 1}, {0,2}, {1, 2}, {0,3}, {1,3}]
and linked from "0100", represented as: {0->3->4->6}
You wouldn't know which items were invalid until you tried to find them (so it doesn't really limit your search space, which is what you're after).
Oh well, I tried.
Sure, it is possible (even if this is "cheating"). Just keep a stack of Remove objects:
struct Remove {
bool set;
int index;
}
The remove function just pushes an object on the stack. Viola, O(1).
If you wanted to get fancy, your stack couldn't exceed (number of bits) without containing duplicate or impossible scenarios.
The rest of the collection has to apply the logic whenever things are withdrawn or iterated over.
Two ways to do insert into the collection:
Apply the Remove rules upon insert, to clear out the stack, making in O(n). Gotta pay somewhere.
Each bitfield has to store it's index in the remove stack, to know what rules apply to it. Then, the stack size limit above wouldn't matter
If you use an array to store your binary tree, you can quickly index any element (the children of the node at index n are at index (n+1)*2 and (n+1)*2-1. All the nodes at a given level are stored sequentially. The first node at at level x is 2^x-1 and there are 2^x elements at that level.
Unfortunately, I don't think this really gets you much of anywhere from a complexity standpoint. Removing all the left nodes at a level is O(n/2) worst case, which is of course O(n). Of course the actual work depends on which bit you are checking, so the average may be somewhat better. This also requires O(2^n) memory which is much worse than the linked list and not practical at all.
I think what this problem is really asking is for a way to efficiently partition a set of sets into two sets. Using a bitset to describe the set gives you a fast check for membership, but doesn't seem to lend itself to making the problem any easier.

Resources