The Theory Behind H3 index system - algorithm

I am getting to understand the theory behind H3 index system. I've been reading several papers on the topic of discrete global grid system, however, it seems to me there's nothing specifically about the algorithm of H3 index system. So, I have the following questions regarding the construction of H3:
I know that the general method for creating grids is to start with a base regular polygon (e.g icosahedron), then divide its faces into smaller triangles, and projecting all the new vertices onto a sphere. There are many ways for the subdivision step, so what is the method that H3 is using for this subdivision step? Also, how the projection onto sphere works in H3?
Does H3 use any special data structure to represent faces, vertices, edges, grids as well as polygon mesh (especially after project them to sphere?) and how i
How does the lat/long to cell work?
Actually there are many other questions about this system I'd like to understand, but it happened that I could not find any online documentation about the theory/implementation of H3. If anyone has any related papers, please shere to me!!
I should mention that I'm looking for a method to divide the sphere into multiple grids where the grids somewhat have equal size, and it should be fast in the process of converting long/lat to grid and grid to long/lat. It seems to me that H3 is a suitable tool, but there might be other approach which has more documention to research. I would love to see your suggestions!
Any help would be appreciate!!

Have you read the H3 docs? They include a fairly good overview of the algorithm.
Roughly speaking, the H3 grid is constructed by:
Starting with an icosahedron, oriented using the Dymaxion orientation
Establishing a base hexagon grid (resolution 0) on each face of the icosahedron, using a planar grid that is then projected with a gnomonic projection
Subdividing each cell into 7 children (or 6 for pentagons) to create increasingly finer resolutions.
I'm not precisely sure what you mean by "special data structure" here - H3 stores the base parameters for the grid in lookup tables, and uses a 64-bit index to represent cells, edges, and vertices.
You can find more information about the lat/lng to cell and cell to lat/lng algorithms in the docs.

Related

Algorithm for creating a specific geometric structure

I observed some applications create a geometric structure apparently by just having a set of touch points. Like this example:
I wonder which algorithms can possibly help me to recreate such geometric structures?
UPDATE
In 3D printing, sometimes a support structure is needed:
The need for support is due to collapse of some 3D object regions, i.e. overhangs, while printing. Support structure is supposed to connect overhangs either to print floor or to 3D object itself. The geometric structure shown in the screenshot above is actually a sample support structure.
I am not a specialist in that matter and I may be missing important issues. So here is what I would naively do.
The triangles having a external normal pointing downward will reveal the overhangs. When projected vertically and merged by common edges, they define polygonal regions of the base plane. You first have to build those projected polygons, find their intersections, and order the intersections by Z. (You might also want to consider the facing polygons to take the surface thickness into account).
Now for every intersection polygon, you draw verticals to the one just below. The projections of the verticals might be sampled from a regular grid or elsehow, to tune the density. You might also consider sampling those pillars from the basement continuously to the upper surface, possibly stopping some of them earlier.
The key ingredient in this procedure is a good polygon intersection algorithm.

Algorithm for grid interpolation/regression given points with holes

I have an image containg a set of identical objects which are disposed into a regular grid fashon. The number of these objects is unknown.
I need to find in a really accurate way the bounding rect of that set of objects and then generate the grid given by them. I can find a lot - but often not all - of these objects in the image using pattern match techiques so i also have the corners coordinates with a good precision.
So, given a number (say, 95%) of the corners coordinates where the missing ones are randomly distributed, i need to "interpolate" the grid.
I'm thinking about linear regression by rows and columns but it seems able to become quite sophisticated if the grid is rotated.
Is there some specific/more general grid-find algorithm which can be suitable for my problem?
Thank you for your attention.

Border points from point set

I have an unordered set of two dimensional points, being the result of a image segmentation. The points when drawn together in a bitmap are a contigous region.
I'd like to know which points are in it's (region) border. The region might be concave, so this has ruled out Convex Hull to me. It also may have "holes" in it (ie. internal and external borders).
There's a good (> 10k) number of points. I tought about using a (non recursive) floodfill like search, adding the border points to a vector. This would also create me a problem to "separate" internal and external border points, if a internal border exists. Is there a better algorithm?
The problem is more complex than it seems. It is very nicely described in the link below, unfortunately without an algorithm. I hope this helps a little.
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CEIQFjAB&url=http%3A%2F%2Fwww.geosensor.net%2Fpapers%2Fgalton06.GISCIENCE.ppt&ei=s4xdUf_BMqT-4QSmrICADw&usg=AFQjCNHKBdBDxQt9G29_l2QW2yd-AxRXXQ&bvm=bv.44770516,d.bGE

Sparse (Pseudo) Infinite Grid Data Structure for Web Game

I'm considering trying to make a game that takes place on an essentially infinite grid.
The grid is very sparse. Certain small regions of relatively high density. Relatively few isolated nonempty cells.
The amount of the grid in use is too large to implement naively but probably smallish by "big data" standards (I'm not trying to map the Internet or anything like that)
This needs to be easy to persist.
Here are the operations I may want to perform (reasonably efficiently) on this grid:
Ask for some small rectangular region of cells and all their contents (a player's current neighborhood)
Set individual cells or blit small regions (the player is making a move)
Ask for the rough shape or outline/silhouette of some larger rectangular regions (a world map or region preview)
Find some regions with approximately a given density (player spawning location)
Approximate shortest path through gaps of at most some small constant empty spaces per hop (it's OK to be a bad approximation often, but not OK to keep heading the wrong direction searching)
Approximate convex hull for a region
Here's the catch: I want to do this in a web app. That is, I would prefer to use existing data storage (perhaps in the form of a relational database) and relatively little external dependency (preferably avoiding the need for a persistent process).
Guys, what advice can you give me on actually implementing this? How would you do this if the web-app restrictions weren't in place? How would you modify that if they were?
Thanks a lot, everyone!
I think you can do everything using quadtrees, as others have suggested, and maybe a few additional data structures. Here's a bit more detail:
Asking for cell contents, setting cell contents: these are the basic quadtree operations.
Rough shape/outline: Given a rectangle, go down sufficiently many steps within the quadtree that most cells are empty, and make the nonempty subcells at that level black, the others white.
Region with approximately given density: if the density you're looking for is high, then I would maintain a separate index of all objects in your map. Take a random object and check the density around that object in the quadtree. Most objects will be near high density areas, simply because high-density areas have many objects. If the density near the object you picked is not the one you were looking for, pick another one.
If you're looking for low-density, then just pick random locations on the map - given that it's a sparse map, that should typically give you low density spots. Again, if it doesn't work right try again.
Approximate shortest path: if this is a not-too-frequent operation, then create a rough graph of the area "between" the starting point A and end point B, for some suitable definition of between (maybe the square containing the circle with the midpoint of AB as center and 1.5*AB as diameter, except if that diameter is less than a certain minimum, in which case... experiment). Make the same type of grid that you would use for the rough shape / outline, then create (say) a Delaunay triangulation of the black points. Do a shortest path on this graph, then overlay that on the actual map and refine the path to one that makes sense given the actual map. You may have to redo this at a few different levels of refinement - start with a very rough graph, then "zoom in" taking two points that you got from the higher level as start and end point, and iterate.
If you need to do this very frequently, you'll want to maintain this type of graph for the entire map instead of reconstructing it every time. This could be expensive, though.
Approx convex hull: again start from something like the rough shape, then take the convex hull of the black points in that.
I'm not sure if this would be easy to put into a relational database; a file-based storage could work but it would be impractical to have a write operation be concurrent with anything else, which you would probably want if you want to allow this to grow to a reasonable number of players (per world / map, if there are multiple worlds / maps). I think in that case you are probably best off keeping a separate process alive... and even then making this properly respect multithreading is going to be a headache.
A kd tree or a quadtree is a good data structure to solve your problem. Especially the latter it's a clever way to address the grid and to reduce the 2d complexity to a 1d complexity. Quadtrees is also used in many maps application like bing and google maps. Here is a good start: Nick quadtree spatial index hilbert curve blog.

Packing arbitrary polygons within an arbitrary boundary

I was wondering if anybody could point me to the best algorithm/heuristic which will fit my particular polygon packing problem. I am given a single polygon as a boundary (convex or concave may also contain holes) and a single "fill" polygon (may also be convex or concave, does not contain holes) and I need to fill the boundary polygon with a specified number of fill polygons. (I'm working in 2D).
Many of the polygon packing heuristics I've found assume that the boundary and/or filling polygons will be rectangular and also that the filling polygons will be of different sizes. In my case, the filling polygons may be non-rectangular, but all will be exactly the same.
Maybe this is a particular type of packing problem? If somebody has a definition for this type of polygon packing I'll gladly google away, but so far I've not found anything which is similar enough to be of great use.
Thanks.
The question you ask is very hard. To put this in perspective, the (much) simpler case where you're packing the interior of your bounded polygon with non-overlapping disks is already hard, and disks are the simplest possible "packing shape" (with any other shape you have to consider orientation as well as size and center location).
In fact, I think it's an open problem in computational geometry to determine for an arbitrary integer N and arbitrary bounded polygonal region (in the Euclidean plane), what is the "optimal" (in the sense of covering the greatest percentage of the polygon interior) packing of N inscribed non-overlapping disks, where you are free to choose the radius and center location of each disk. I'm sure the "best" answer is known for certain special polygonal shapes (like rectangles, circles, and triangles), but for arbitrary shapes your best "heuristic" is probably:
Start your shape counter at N.
Add the largest "packing shape" you can fit completely inside the polygonal boundary without overlapping any other packing shapes.
Decrement your shape counter.
If your shape counter is > 0, go to step 2.
I say "probably" because "largest first" isn't always the best way to pack things into a confined space. You can dig into that particular flavor of craziness by reading about the bin packing problem and knapsack problem.
EDIT: Step 2 by itself is hard. A reasonable strategy would be to pick an arbitrary point on the interior of the polygon as the center and "inflate" the disk until it touches either the boundary or another disk (or both), and then "slide" the disk while continuing to inflate it so that it remains inside the boundary without overlapping any other disks until it is "trapped" - with at least 2 points of contact with the boundary and/or other disks. But it isn't easy to formalize this "sliding process". And even if you get the sliding process right, this strategy doesn't guarantee that you'll find the biggest "inscribable disk" - your "locally maximal" disk could be trapped in a "lobe" of the interior which is connected by a narrow "neck" of free space to a larger "lobe" where a larger disk would fit.
Thanks for the replies, my requirements were such that I was able to further simplify the problem by not having to deal with orientation and I then even further simplified by only really worrying about the bounding box of the fill element. With these two simplifications the problem became much easier and I used a stripe like filling algorithm in conjunction with a spatial hash grid (since there were existing elements I was not allowed to fill over).
With this approach I simply divided the fill area into stripes and created a spatial hash grid to register existing elements within the fill area. I created a second spatial hash grid to register the fill area (since my stripes were not guaranteed to be within the bounding area, this made checking if my fill element was in the fill area a little faster since I could just query the grid and if all grids where my fill element were to be placed, were full, I knew the fill element was inside the fill area). After that, I iterated over each stripe and placed a fill element where the hash grids would allow. This is certainly not an optimal solution, but it ended up being all that was required for my particular situation and pretty fast as well. I found the required information about creating a spatial hash grid from here. I got the idea for filling by stripes from this article.
This type of problem is very complex to solve geometrically.
If you can accept a good solution instead of the 100% optimal
solution then you can to solve it with a raster algorithm.
You draw (rasterize) the boundary polygon into one in-memory
image and the fill polygon into another in-memory image.
You can then more easily search for a place where the fill polygon will
fit in the boundary polygon by overlaying the two images with
various (X, Y) offsets for the fill polygon and checking
the pixel values.
When you find a place that the fill polygon fits,
you clear the pixels in the boundary polygon and repeat
until there are no more places where the fill polygon fits.
The keywords to google search for are: rasterization, overlay, algorithm
If your fill polygon is the shape of a jigsaw piece, many algorithms will miss the interlocking alignment. (I don't know what to suggest in that case)
One approach to the general problem that works well when the boundary is much larger than
the fill pieces is to tile an infinite plane with the pieces in the best way you can, and then look for the optimum alignment of the boundary on this plane.

Resources