Store XML Data in Near Protocol - nearprotocol

I need to store and retrieve XML-Data in a Near Protocol Blockchain and I have never done anything with Blockchains before.
How do I start and what do I need?
I tried to learn about Smart Contracts and about Blocks in a Blockchain. But I am not sure how I should start and whats some.

NEAR supports storing data as key-value pairs. If you work with XML, you have to manually serialize/deserialize your data structures.
Notice the concept of smart-contracts, the data is stored as part of the contracts state.
Read more about state and storage:
https://docs.near.org/concepts/basics/accounts/state#contracts-state
https://docs.near.org/concepts/storage/data-storage
Also notice that NEAR SDKs (for JavaScript and Rust) abstract away from you the inner workings of the blockchain, so you don’t need to worry about these advanced concept when just getting started.
If you’re new to blockchain and NEAR, I suggest following a few tutorials and articles on NEAR Docs site: https://docs.near.org/
A good tutorial that demonstrates storage utilization is the Guest Book tutorial: https://docs.near.org/tutorials/examples/guest-book

Related

Private transactions

After watching Gavin's talk where he mentions private transactions in the Q&A, I started looking into if it's a thing on Substrate. I found this Parity Ethereum wiki article describing something similar. Is this currently possible on Substrate?
edit: I want to create encrypted transactions that only a selected number of peers can view. For each transaction this set might change.
AFAIK there is no such solution on Substrate as of the time of writing this post.
There are some privacy layers which are being built on Substrate such as Zero Chain:
Zerochain is a generic privacy-protecting layer on top of Substrate. It provides some useful substrate modules and toolkit for protecting user's privacy and sensitive data stored on chain. It is designed to get efficient zero-knowledge proving, reduce the on-chain storage cost and bring the flexibility for developing applications.
I don't think however, this attempts to solve the problem you are exactly describing.

Event model or schema in event store

Events in an event store (event sourcing) are most often persisted in a serialized format with versions to represent a changed in the model or schema for an event type. I haven't been able to find good documentation showing the actual model or schema for an actual event (often data table in event store schema if using a RDBMS) but understand that ideally it should be generic.
What are the most basic fields/properties that should exist in an event?
I've contemplated using json-api as a specification for my events but perhaps that's too "heavy". The benefits I see are flexibility and maturity.
Am I heading down the "wrong path"?
Any well defined examples would be greatly appreciated.
I've contemplated using json-api as a specification for my events but perhaps that's too "heavy". The benefits I see are flexibility and maturity.
Am I heading down the "wrong path"?
Don't overlook forward and backward compatibility.
You should plan to review Greg Young's book on event versioning; it doesn't directly answer your question, but it does cover a lot about the basics of interpreting an event.
Short answer: pretty much everything is optional, because you need to be able to change it later.
You should also review Hohpe's Enterprise Integration Patterns, in particular his work on messaging, which details a lot of cases you may care about.
de Graauw's Nobody Needs Reliable Messaging helped me to understan an important point.
To summarize: if reliability is important on the business level, do it on the business level.
So while there are some interesting bits of meta data tracking that you may want to do, the domain model is really only going to look at the data; and that is going to tend to be specific to your domain.
You also have the fun that the representation of events that you use in the service that produces them may not match the representation that it shares with other services, and in particular may not be the same message that gets broadcast.
I worked through an exercise trying to figure out what the minimum amount of information necessary for a subscriber to look at an event to understand if it cares. My answers were an id (have I seen this specific event before?), a token that tells you the semantic meaning of the message (is that something I care about?), and a location (URI) to get a richer representation if it is something I care about.
But outside of the domain -- for example, when you are looking at the system as a whole trying to figure out what is going on, having correlation identifiers and causation identifiers, time stamps, signatures of the source location, and so on stored in a consistent location in the meta data can be a big help.
Just modelling with basic types that map to Json to write as you would for an API can go a long way.
You can spend a lot of time generating overly complex models if you throw too much tooling at it - things like Apache Thrift and/or Protocol Buffers (or derived things) will provide all sorts of IDL mechanisms for you to generate incidental complexity with.
In .NET land and many other platforms, if you namespace the types you can do various projections from the types
Personally, I've used records and DUs in F# as a design and representation tool
you get intellisense, syntax hilighting, and types you can use from F# or C# for free
if someone wants to look, types.fs has all they need

Finding an object using tango device

I want to create a small project using google project tango where I want to identify different objects like chairs and tables. I am using area learning mechanism. I want to know what else I need to use to identify different objects in 3D space.
Object recognition isn't really a trivial problem and, depending on your approach and how flexible you want it to be, can become very involved and complicated. I would strongly recommend you do some research and read up on the topic first and make sure you have a good grasp on the basics.
That being said, there are existing Android projects available on GitHub, etc. that are capable of recognising various objects and I would recommend you have a look at those.
By the way, is there a specific reason you want to implement this on a Tango? Unless you plan on using the point cloud data instead of image data, object recognition should be able to work on a normal, non-Tango device as well.

Use Cases of NIFI

I have a question about Nifi and its capabilities as well as the appropriate use case for it.
I've read that Nifi is really aiming to create a space which allows for flow-based processing. After playing around with Nifi a bit, what I've also come to realize is it's capability to model/shape the data in a way that is useful for me. Is it fair to say that Nifi can also be used for data modeling?
Thanks!
Data modeling is a bit of an overloaded term, but in the context of your desire to model/shape the data in a way that is useful for you, it sounds like it could be a viable approach. The rest of this is under that assumption.
While NiFi employs dataflow through principles and design closely related to flow based programming (FBP) as a means, the function is a matter of getting data from point A to B (and possibly back again). Of course, systems aren't inherently talking in the same protocols, formats, or schemas, so there needs to be something to shape the data into what the consumer is anticipating from what the producer is supplying. This gets into common enterprise integration patterns (EIP) [1] such as mediation and routing. In a broader sense though, it is simply getting the data to those that need it (systems, users, etc) when and how they need it.
Joe Witt, one of the creators of NiFi, gave a great talk that may be in line with this idea of data shaping in the context of Data Science at a Meetup. The slides of which are available [2].
If you have any additional questions, I would point you to check out the community mailing lists [3] and ask any additional questions so you can dig in more and get a broader perspective.
[1] https://en.wikipedia.org/wiki/Enterprise_Integration_Patterns
[2] http://files.meetup.com/6195792/ApacheNiFi-MD_DataScience_MeetupApr2016.pdf
[3] http://nifi.apache.org/mailing_lists.html
Data modeling might well mean many things to many folks so I'll be careful to use that term here. What I do think in what you're asking is very clear is that Apache NiFi is a great system to use to help mold the data into the right format and schema and content you need for your follow-on analytics and processing. NiFi has an extensible model so you can add processors that can do this or you can use the existing processors in many cases and you can even use the ExecuteScript processors as well so you can write scripts on the fly to manipulate the data.

What is the difference between Falcor and GraphQL?

GraphQL consists of a type system, query language and execution
semantics, static validation, and type introspection, each outlined
below. To guide you through each of these components, we've written an
example designed to illustrate the various pieces of GraphQL.
- https://github.com/facebook/graphql
Falcor lets you represent all your remote data sources as a single
domain model via a virtual JSON graph. You code the same way no matter
where the data is, whether in memory on the client or over the network
on the server.
- http://netflix.github.io/falcor/
What is the difference between Falcor and GraphQL (in the context of Relay)?
I have viewed the Angular Air Episode 26: FalcorJS and Angular 2 where Jafar Husain answers how GraphQL compares to FalcorJS. This is the summary (paraphrasing):
FalcorJS and GraphQL are tackling the same problem (querying data, managing data).
The important distinction is that GraphQL is a query language and FalcorJS is not.
When you are asking FalcorJS for resources, you are very explicitly asking for finite series of values. FalcorJS does support things like ranges, e.g. genres[0..10]. But it does not support open-ended queries, e.g. genres[0..*].
GraphQL is set based: give me all records where true, order by this, etc. In this sense, GraphQL query language is more powerful than FalcorJS.
With GraphQL you have a powerful query language, but you have to interpret that query language on the server.
Jafar argues that in most applications, the types of the queries that go from client to server share the same shape. Therefore, having a specific and predictable operations like get and set exposes more opportunities to leverage cache. Furthermore, a lot of the developers are familiar with mapping the requests using a simple router in REST architecture.
The end discussion resolves around whether the power that comes with GraphQL outweighs the complexity.
I have now written apps with both libraries and I can agree with everything in Gajus' post, but found some different things most important in my own use of the frameworks.
Probably the biggest practical difference is that most of the examples and presumably work done up to this point on GraphQL has been concentrated on integrating GraphQL with Relay - Facebook's system for integrating ReactJS widgets with their data requirements. FalcorJS on the other hand tends to act separately from the widget system which means both that it may be easier to integrate into a non-React/Relay client and that it will do less for you automatically in terms of matching widget data dependencies with widgets.
The flip side of FalcorJS being flexible in client side integrations is that it can be very opinionated about how the server needs to act. FalcorJS actually does have a straight up "Call this Query over HTTP" capability - although Jafar Husain doesn't seem to talk about it very much - and once you include those, the way the client libraries react to server information is quite similar except that GraphQL/Relay adds a layer of configuration. In FalcorJS, if you are returning a value for movie, your return value better say 'movie', whereas in GraphQL, you can describe that even though the query returns 'film', you should put that in the client side datastore as 'movie'. - this is part of the power vs complexity tradeoff that Gajus mentioned.
On a practical basis, GraphQL and Relay seems to be more developed. Jafar Husain has mentioned that the next version of the Netflix frontend will be running at least in part on FalcorJS whereas the Facebook team has mentioned that they've been using some version of the GraphQL/Relay stack in production for over 3 years.
The open source developer community around GraphQL and Relay seems to be thriving. There are a large number of well-attended supporting projects around GraphQL and Relay whereas I have personally found very few around FalcorJS. Also the base github repository for Relay (https://github.com/facebook/relay/pulse) is significantly more active than the github repository for FalcorJS (https://github.com/netflix/falcor/pulse). When I first pulled the Facebook repo, the examples were broken. I opened a github issue and it was fixed within hours. On the other hand, the github issue I opened on FalcorJS has had no official response in two weeks.
Lee Byron one of the engineer behind GraphQL did an AMA on hashnode, here is his answer when asked this question:
Falcor returns Observables, GraphQL just values. For how Netflix wanted to use Falcor, this makes a lot of sense for them. They make multiple requests and present data as it's ready, but it also means that the client developer has to work with the Observables directly. GraphQL is a request/response model, and returns back JSON, which is trivially easy to then use. Relay adds back in some of the dynamicism that Falcor presents while maintaining only using plain values.
Type system. GraphQL is defined in terms of a type system, and that's allowed us to built lots of interesting tools like GraphiQL, code generators, error detection, etc. Falcor is much more dynamic, which is valuable in its own right but limits the ability to do this kind of thing.
Network usage. GraphQL was originally designed for operating Facebook's news feed on low end devices on even lower end networks, so it goes to great lengths to allow you to declare everything you need in a single network request in order to minimize latency. Falcor, on the other hand, often performs multiple round trips to collect additional data. This is really just a tradeoff between the simplicity of the system and the control of the network. For Netflix, they also deal with very low end devices (e.g. Roku stick) but the assumption is the network will be good enough to stream video.
Edit: Falcor can indeed batch requests, making the comment about the network usage inaccurate. Thanks to #PrzeoR
UPDATE: I've found the very useful comment under my post that I want to share with you as a complementary thing to the main content:
Regarding lack of examples, you can find the awesome-falcorjs repo userful, there are different examples of a Falcor's CRUD usage:
https://github.com/przeor/awesome-falcorjs ... Second thing, there is a book called "Mastering Full Stack React Development" which includes Falcor as well (good way to learn how to use it):
ORGINAL POST BELOW:
FalcorJS (https://www.facebook.com/groups/falcorjs/) is much more simpler to be efficient in comparison to Relay/GraphQL.
The learning curve for GraphQL+Relay is HUGE:
In my short summary: Go for Falcor. Use Falcor in your next project until YOU have a large budget and a lot of learning time for your team then use RELAY+GRAPHQL.
GraphQL+Relay has huge API that you must be efficient in. Falcor has small API and is very easy to grasp to any front-end developer who is familiar with JSON.
If you have an AGILE project with limited resources -> then go for FalcorJS!
MY SUBJECTIVE opinion: FalcorJS is 500%+ easier to be efficient in full-stack javascript.
I have also published some FalcorJS starter kits on my project (+more full-stack falcor's example projects): https://www.github.com/przeor
To be more in technical details:
1) When you are using Falcor, then you can use both on front-end and backend:
import falcor from 'falcor';
and then build your model based upon.
... you need also two libraries which are simple to use on backend:
a) falcor-express - you use it once (ex. app.use('/model.json', FalcorServer.dataSourceRoute(() => new NamesRouter()))). Source: https://github.com/przeor/falcor-netflix-shopping-cart-example/blob/master/server/index.js
b) falcor-router - there you define SIMPLE routes (ex. route: '_view.length'). Source:
https://github.com/przeor/falcor-netflix-shopping-cart-example/blob/master/server/router.js
Falcor is piece of cake in terms of learning curve.
You can also see documentation which is much simpler than FB's lib and check also the article "why you should care about falcorjs (netflix falcor)".
2) Relay/GraphQL is more likely like a huge enterprise tool.
For example, you have two different documentations that separately are talking about:
a) Relay: https://facebook.github.io/relay/docs/tutorial.html
- Containers
- Routes
- Root Container
- Ready State
- Mutations
- Network Layer
- Babel Relay Plugin
- GRAPHQL
GraphQL Relay Specification
Object Identification
Connection
Mutations
Further Reading
API REFERENCE
Relay
RelayContainer
Relay.Route
Relay.RootContainer
Relay.QL
Relay.Mutation
Relay.PropTypes
Relay.Store
INTERFACES
RelayNetworkLayer
RelayMutationRequest
RelayQueryRequest
b) GrapQL: https://facebook.github.io/graphql/
2Language
2.1Source Text
2.1.1Unicode
2.1.2White Space
2.1.3Line Terminators
2.1.4Comments
2.1.5Insignificant Commas
2.1.6Lexical Tokens
2.1.7Ignored Tokens
2.1.8Punctuators
2.1.9Names
2.2Query Document
2.2.1Operations
2.2.2Selection Sets
2.2.3Fields
2.2.4Arguments
2.2.5Field Alias
2.2.6Fragments
2.2.6.1Type Conditions
2.2.6.2Inline Fragments
2.2.7Input Values
2.2.7.1Int Value
2.2.7.2Float Value
2.2.7.3Boolean Value
2.2.7.4String Value
2.2.7.5Enum Value
2.2.7.6List Value
2.2.7.7Input Object Values
2.2.8Variables
2.2.8.1Variable use within Fragments
2.2.9Input Types
2.2.10Directives
2.2.10.1Fragment Directives
3Type System
3.1Types
3.1.1Scalars
3.1.1.1Built-in Scalars
3.1.1.1.1Int
3.1.1.1.2Float
3.1.1.1.3String
3.1.1.1.4Boolean
3.1.1.1.5ID
3.1.2Objects
3.1.2.1Object Field Arguments
3.1.2.2Object Field deprecation
3.1.2.3Object type validation
3.1.3Interfaces
3.1.3.1Interface type validation
3.1.4Unions
3.1.4.1Union type validation
3.1.5Enums
3.1.6Input Objects
3.1.7Lists
3.1.8Non-Null
3.2Directives
3.2.1#skip
3.2.2#include
3.3Starting types
4Introspection
4.1General Principles
4.1.1Naming conventions
4.1.2Documentation
4.1.3Deprecation
4.1.4Type Name Introspection
4.2Schema Introspection
4.2.1The "__Type" Type
4.2.2Type Kinds
4.2.2.1Scalar
4.2.2.2Object
4.2.2.3Union
4.2.2.4Interface
4.2.2.5Enum
4.2.2.6Input Object
4.2.2.7List
4.2.2.8Non-null
4.2.2.9Combining List and Non-Null
4.2.3The __Field Type
4.2.4The __InputValue Type
5Validation
5.1Operations
5.1.1Named Operation Definitions
5.1.1.1Operation Name Uniqueness
5.1.2Anonymous Operation Definitions
5.1.2.1Lone Anonymous Operation
5.2Fields
5.2.1Field Selections on Objects, Interfaces, and Unions Types
5.2.2Field Selection Merging
5.2.3Leaf Field Selections
5.3Arguments
5.3.1Argument Names
5.3.2Argument Uniqueness
5.3.3Argument Values Type Correctness
5.3.3.1Compatible Values
5.3.3.2Required Arguments
5.4Fragments
5.4.1Fragment Declarations
5.4.1.1Fragment Name Uniqueness
5.4.1.2Fragment Spread Type Existence
5.4.1.3Fragments On Composite Types
5.4.1.4Fragments Must Be Used
5.4.2Fragment Spreads
5.4.2.1Fragment spread target defined
5.4.2.2Fragment spreads must not form cycles
5.4.2.3Fragment spread is possible
5.4.2.3.1Object Spreads In Object Scope
5.4.2.3.2Abstract Spreads in Object Scope
5.4.2.3.3Object Spreads In Abstract Scope
5.4.2.3.4Abstract Spreads in Abstract Scope
5.5Values
5.5.1Input Object Field Uniqueness
5.6Directives
5.6.1Directives Are Defined
5.7Variables
5.7.1Variable Uniqueness
5.7.2Variable Default Values Are Correctly Typed
5.7.3Variables Are Input Types
5.7.4All Variable Uses Defined
5.7.5All Variables Used
5.7.6All Variable Usages are Allowed
6Execution
6.1Evaluating requests
6.2Coercing Variables
6.3Evaluating operations
6.4Evaluating selection sets
6.5Evaluating a grouped field set
6.5.1Field entries
6.5.2Normal evaluation
6.5.3Serial execution
6.5.4Error handling
6.5.5Nullability
7Response
7.1Serialization Format
7.1.1JSON Serialization
7.2Response Format
7.2.1Data
7.2.2Errors
AAppendix: Notation Conventions
A.1Context-Free Grammar
A.2Lexical and Syntactical Grammar
A.3Grammar Notation
A.4Grammar Semantics
A.5Algorithms
BAppendix: Grammar Summary
B.1Ignored Tokens
B.2Lexical Tokens
B.3Query Document
It's your choice:
Simple sweet and short documented Falcor JS VERSUS Huge-enterprise-grade tool with long and advanced documentation as GraphQL&Relay
As I said before, if you are a front-end dev who grasp idea of using JSON, then JSON graph implementation from Falcor's team is best way to do your full-stack dev project.
In short, Falcor or GraphQL or Restful solve the same problem - provide a tool to query/manipulate data effectively.
How they differ is in how they present their data:
Falcor wants you to think their data as a very big virtual JSON tree, and uses get, set and call to read, write data.
GraphQL wants you to think their data as a group of predefined typed objects, and uses queries and mutations to read, write data.
Restful wants you to think their data as a group of resources, and uses HTTP verbs to read, write data.
Whenever we need to provide data for user, we end up with something liked: client -> query -> {a layer translate query into data ops} -> data.
After struggling with GraphQL, Falcor and JSON API (and even ODdata), I wrote my own data query layer. It's simpler, easier to learn, and more equivalent with GraphQL.
Check it out at:
https://github.com/giapnguyen74/nextql
It also integrates with featherjs for real time query/mutation.
https://github.com/giapnguyen74/nextql-feathers
OK, just start from a simple but important difference, GraphQL is a query based while Falcor is not!
But how they help u?
Basically, they both helping us to manage and querying data, but GraphQL has a req/res Model and return the data as JSON, basically the idea in GraphQL is having a single request to get all your data in one goal... Also, have exact response by having an exact request, So something to run on low-speed internet and mobile devices, like 3G networks... So if you have many mobile users or for some reasons you'd like to have less requests and faster response, use GraphQL... While Faclor is not too far from this, so read on...
On the other hand, Falcor by Netflix, usually have extra request (usually more than once) to retrieve all your data, eventhough they trying to improving it to a single req... Falcor is more limited for queries and doesn't have pre-defined query helpers like range and etc...
But for more clarification, let's see how each of them introduce itself:
GraphQL, A query language for your API
GraphQL is a query language for APIs and a runtime for fulfilling
those queries with your existing data. GraphQL provides a complete and
understandable description of the data in your API, gives clients the
power to ask for exactly what they need and nothing more, makes it
easier to evolve APIs over time, and enables powerful developer tools.
Send a GraphQL query to your API and get exactly what you need,
nothing more and nothing less. GraphQL queries always return
predictable results. Apps using GraphQL are fast and stable because
they control the data they get, not the server.
GraphQL queries access not just the properties of one resource but
also smoothly follow references between them. While typical REST APIs
require loading from multiple URLs, GraphQL APIs get all the data your
app needs in a single request. Apps using GraphQL can be quick even on
slow mobile network connections.
GraphQL APIs are organized in terms of types and fields, not
endpoints. Access the full capabilities of your data from a single
endpoint. GraphQL uses types to ensure Apps only ask for what’s
possible and provide clear and helpful errors. Apps can use types to
avoid writing manual parsing code.
Falcor, a JavaScript library for efficient data fetching
Falcor lets you represent all your remote data sources as a single
domain model via a virtual JSON graph. You code the same way no matter
where the data is, whether in memory on the client or over the network
on the server.
A JavaScript-like path syntax makes it easy to access as much or as
little data as you want, when you want it. You retrieve your data
using familiar JavaScript operations like get, set, and call. If you
know your data, you know your API.
Falcor automatically traverses references in your graph and makes
requests as needed. Falcor transparently handles all network
communications, opportunistically batching and de-duping requests.

Resources