Stargazer blank fields for ergm fields - stargazer

I get blank fields in my stargazer summary from my ERG model. I tried setting the summary setting to TRUE and FALSE, both didn't work.
# HERE IS MY ERGM SUMMARY OUTPUT
> summary(ergm68)
Call:
ergm(formula = net_68 ~ edges + gwb1degree(fixed = T, decay = 0.4) +
b1factor("org", base = 1, levels = "L") + b1factor("org",
levels = "P"), bipartite = T)
Monte Carlo Maximum Likelihood Results:
Estimate Std. Error MCMC % z value Pr(>|z|)
edges -1.2388 1.2296 0 -1.007 0.314
gwb1deg.fixed.0.4 1.0210 1.3756 0 0.742 0.458
b1factor.org.L 1.6768 1.0500 0 1.597 0.110
b1factor.org.P 0.3234 1.0186 0 0.317 0.751
Null Deviance: 95.65 on 69 degrees of freedom
Residual Deviance: 88.26 on 65 degrees of freedom
AIC: 96.26 BIC: 105.2 (Smaller is better. MC Std. Err. = 0.03973)
> stargazer(ergm68, type="text", summary=T, digits=1)
# Stargazer summary set to TRUE
> stargazer(ergm79, type="text", summary=T, digits=1)
===============================================
Dependent variable:
---------------------------
net_79
-----------------------------------------------
edges
gwb1deg.fixed.0.4
b1factor.org.L
b1factor.org.P
-----------------------------------------------
Akaike Inf. Crit. 399.0
Bayesian Inf. Crit. 413.8
===============================================
Note: *p<0.1; **p<0.05; ***p<0.01
>
Stargazer summary set to FALSE
> stargazer(ergm79, type="text", summary=F, digits=1)
===============================================
Dependent variable:
---------------------------
net_79
-----------------------------------------------
edges
gwb1deg.fixed.0.4
b1factor.org.L
b1factor.org.P
-----------------------------------------------
Akaike Inf. Crit. 399.0
Bayesian Inf. Crit. 413.8
===============================================
Note: *p<0.1; **p<0.05; ***p<0.01
>
No luck getting stargazer to generate a complete table form my ERGM output model. I'm not sure if I have missed a setting. Seems to have worked before without any trouble.

Related

Calculate certainty of Monte Carlo simulation

Let's say that we use the Monte Carlo method to estimate the area of an object, in the exact same way you'd use it to estimate the value of π.
Now, let's say we want to calculate the certainty of our simulation result. We've cast n samples, m of which landed inside the object, so the area of the object is approximately m/n of the total sampled area. We would like to make a statement such as:
"We are 99% certain that the area of the object is between a1 and a2."
How can we calculate a1 and a2 above (given n, m, total area, and the desired certainty)?
Here is a program which attempts to estimate this bound numerically. Here the samples are points in [0,1), and the object is the segment [0.25,0.75). It prints a1 and a2 for 50%, 90%, and 99%, for a range of sample counts:
import std.algorithm;
import std.random;
import std.range;
import std.stdio;
void main()
{
foreach (numSamples; iota(0, 1000+1, 100).filter!(n => n > 0))
{
auto samples = new double[numSamples];
enum objectStart = 0.25;
enum objectEnd = 0.75;
enum numTotalSamples = 10_000_000;
auto numSizes = numTotalSamples / numSamples;
auto sizes = new double[numSizes];
foreach (ref size; sizes)
{
size_t numHits;
foreach (i; 0 .. numSamples)
{
auto sample = uniform01!double;
if (sample >= objectStart && sample < objectEnd)
numHits++;
}
size = 1.0 / numSamples * numHits;
}
sizes.sort;
writef("%d samples:", numSamples);
foreach (certainty; [50, 90, 99])
{
auto centerDist = numSizes * certainty / 100 / 2;
auto startPos = numSizes / 2 - centerDist;
auto endPos = numSizes / 2 + centerDist;
writef("\t%.5f..%.5f", sizes[startPos], sizes[endPos]);
}
writeln;
}
}
(Run it online.) It outputs:
// 50% 90% 99%
100 samples: 0.47000..0.53000 0.42000..0.58000 0.37000..0.63000
200 samples: 0.47500..0.52500 0.44500..0.56000 0.41000..0.59000
300 samples: 0.48000..0.52000 0.45333..0.54667 0.42667..0.57333
400 samples: 0.48250..0.51750 0.46000..0.54250 0.43500..0.56500
500 samples: 0.48600..0.51600 0.46400..0.53800 0.44200..0.55800
600 samples: 0.48667..0.51333 0.46667..0.53333 0.44833..0.55167
700 samples: 0.48714..0.51286 0.46857..0.53143 0.45000..0.54857
800 samples: 0.48750..0.51250 0.47125..0.53000 0.45375..0.54625
900 samples: 0.48889..0.51111 0.47222..0.52667 0.45778..0.54111
1000 samples: 0.48900..0.51000 0.47400..0.52500 0.45800..0.53900
Is it possible to precisely calculate these numbers instead?
(Context: I'd like to add something like "±X.Y GB with 99% certainty" to btdu)
Ok, with question being language agnostic, here is the illustration how to do error estimation with Monte-Carlo.
Suppose, you want to compute integral
I = S01 f(x) dx
where f(x) is simple polynomial function
f(x) = xn
Here is the illustration of the calculations.
For that you have to compute not only mean value, but standard deviation as well.
Then, knowing that Monte Carlo error is going down as inverse square root of number of samples, computing confidence interval is simple
Code, Python 3.7, Windows 10 x64
import numpy as np
rng = np.random.default_rng()
N = 100000
n = 2
def f(x):
return np.power(x, n)
sample = f(rng.random(N)) # N samples of the function
m = np.mean(sample) # mean value of the sample, approaching integral value as N->∞
s = np.std(sample, ddof=1) # standard deviation with Bessel correction
e = s / np.sqrt(N) # Monte Carlo error decreases as inverse square root
t = 2.576 # For 99% confidence interval, we should take 2.58 sigma, per Gaussian distribution
#t = 3.00 # For 99.7% confidence interval, we should take 3 sigma, per Gaussian distribution
print(f'True integral value is {1.0/(1.0+n)}')
print(f'Computed integral value is in the range [{m-t*e}...{m+t*e}] with 99% confidence')
will print something like
True integral value is 0.3333333333333333
Computed integral value is in the range
[0.33141772204489295...0.3362795491124624] with 99% confidence
You could use Z-score table, line this one along the lines, to print table you want. You could vary N to get desired N dependency
zscore = {'50%': 0.674, '80%': 1.282, '90%': 1.645, '95%': 1.960, '98%': 2.326, '99%': 2.576, '99.7%': 3.0}
for c, z in zscore.items():
print(f'Computed integral value is in the range [{m-z*e}...{m+z*e}] with {c} confidence')
Based on Severin's answer, here is the code to calculate the values as stated in the question:
def calculate_error(n, m, z):
p = m / n
std_dev = (p * (1 - p)) ** 0.5 # Standard deviation of Bernoulli variable
error = std_dev / n ** 0.5 # Monte Carlo error decreases as inverse square root
return (mean - z * error, mean + z * error)
n = 1000
z = 2.576 # For 99% confidence interval, we should take 2.58 sigma, per Gaussian distribution
print(calculate_error(n, n * 0.5, z))

Modelling an input that can be used a finite amount of times along a time horizon and is also binary

Happy holidays everyone! I finally have some time off to work on my project, and of course I'm stuck as usual lol.
I'm looking for guidance/examples that would let me be able to model the following:
I have an input (lets call it a 'jump') that is binary (0 or 1) and I want it to only be able to be used only once (or possibly a 'n' number of times where n<#time steps) over the entire time horizon. The affect this input has on the system is it will instantaneously increase the velocity of the system by some predetermined amount.
The second affect this has on the system is that the set of dynamics that progress the system forward in time change. (In this case the 'jump' will change the dynamics from a driving system to a flying system). In the future there will also be a 'double_jump' that does not change the dynamics but does still provide an instantaneous change in velocity. Currently I'm trying to get the first part down then I'm going to attempt to implement this. Just want to keep my bigger vision clear to anyone reading this.
Also another part that is for the future of the model: I'd like to be able to have the system interact with a ball object by let's say using the if2/if3 and if the system's position is some radius from another object's position an impulse will be imparted on the ball object dependent on things like the velocities of the ball and the system. To do properly I imagine I need a way to define a time step that happens at the interaction point, which I believe means I'll need some sort of variable time vector. Any examples for these would be much appreciated.
Okay so 2 and 3 are just here to be here, not really the main points of this question. I think I'll be able to figure them out once I can wrap my head around implementing this weird 'jump' input.
My current plan is to have an MV called 'u_jump' that is a non-integer. Then have a Var called 'jump_hist' that is essentially the 'integral' of 'u_jump', and I give jump_hist an upper bound of 1. What I do right now is just pretend this u_jump is an acceleration on the system by adding to the velocity.dt() equation. This works in theory but doesn't really represent the system I'm trying to control perfectly.
What would be the best example for me to learn some lessons from for implementing this? And another question, is there a way to make the IPOPT solver work for integer solutions by giving the integers a tolerance? Somewhat like the minlp solver option 'minlp_integer_tol 0.05', that way I can still get the speed of IPOPT but the ability to incorporate integer style variables/equations like if3() etc... If not, are there ways I can approach the integer solution with a non-integer solution such that when I implement the control on a real system, the difference between the non-integer solution and the integer solution is within some acceptable tolerance to consider it a disturbance that a feedback controller could mitigate?
Kind of a mouthful I know, my questions always are haha. Hopefully this is helpful for others in the future! Here's my code currently. Let me know if the code gives you issues or anything I could clear up in the question.
Oh and one final note, this is currently setup as a 2D flying system. I've removed the driving dynamics (the c splines commented out) for simplicity of implementing this 'jump' input.
Happy Holidays again everyone!
import numpy as np
import matplotlib.pyplot as plt
import math
import gekko
from gekko import GEKKO
import csv
from mpl_toolkits.mplot3d import Axes3D
class Optimizer():
def __init__(self):
#################GROUND DRIVING OPTIMIZER SETTTINGS##############
self.d = GEKKO(remote=False) # Driving on ground optimizer
ntd = 21
self.d.time = np.linspace(0, 1, ntd) # Time vector normalized 0-1
# options
self.d.options.NODES = 3
self.d.options.SOLVER = 3
self.d.options.IMODE = 6# MPC mode
self.d.options.MAX_ITER = 800
self.d.options.MV_TYPE = 0
self.d.options.DIAGLEVEL = 0
# self.d.options.OTOL = 1
# final time for driving optimizer
self.tf = self.d.FV(value=1.0,lb=0.1,ub=10.0, name='tf')
# allow gekko to change the tf value
self.tf.STATUS = 1
# time variable
self.t = self.d.Var(value=0)
self.d.Equation(self.t.dt()/self.tf == 1)
# Acceleration variable
self.a = self.d.MV(fixed_initial=False, lb = 0, ub = 1, name='a')
self.a.STATUS = 1
# Jumping integer varaibles and equations
self.u_jump = self.d.MV(fixed_initial=False, lb=0, ub=1, integer=True)
self.u_jump.STATUS = 1
self.jump_hist = self.d.Var(value=0, name='jump_hist', lb=0, ub=1)
self.d.Equation(self.jump_hist.dt() == self.u_jump*(ntd-1))
# self.d.Equation(1.0 >= self.jump_hist)
# pitch input throttle (rotation of system)
self.u_p = self.d.MV(fixed_initial=False, lb = -1, ub=1)
self.u_p.STATUS = 1
# Final variable that allows you to set an objective function considering only final state
self.p_d = np.zeros(ntd)
self.p_d[-1] = 1.0
self.final = self.d.Param(value = self.p_d, name='final')
# Model constants and parameters
self.Dp = self.d.Const(value = 2.7982, name='D_pitch')
self.Tp = self.d.Const(value = 12.146, name='T_pitch')
self.pi = self.d.Const(value = 3.14159, name='pi')
self.g = self.d.Const(value = 0, name='Fg')
self.jump_magnitude = self.d.Param(value = 3000, name = 'jump_mag')
def optimize2D(self, si, sf, vi, vf, ri, omegai): #these are 1x2 vectors s or v [x, z]
# variables and intial conditions
# Position in 2d
self.sx = self.d.Var(value=si[0], lb=-4096, ub=4096, name='x') #x position
# self.sy = self.d.Var(value=si[1], lb=-5120, ub=5120, name='y') #y position
self.sz = self.d.Var(value = si[1])
# Pitch rotation and angular velocity
self.pitch = self.d.Var(value = ri, name='pitch', lb=-1*self.pi, ub=self.pi)
self.pitch_dot = self.d.Var(fixed_initial=False, name='pitch_dot')
# Velocity in 2D
self.v_mag = self.d.Var(value=(vi), name='v_mag')
self.vx = self.d.Var(value=np.cos(ri), name='vx') #x velocity
# self.vy = self.d.Var(value=(np.sin(ri) * vi), name='vy') #y velocity
self.vz = self.d.Var(value = (np.sin(ri) * vi), name='vz')
## Non-linear state dependent dynamics descired as csplines.
#curvature vs vel as a cubic spline for driving state
cur = np.array([0.0069, 0.00398, 0.00235, 0.001375, 0.0011, 0.00088])
v_cur = np.array([0,500,1000,1500,1750,2300])
v_cur_fine = np.linspace(0,2300,100)
cur_fine = np.interp(v_cur_fine, v_cur, cur)
self.curvature = self.d.Var(name='curvature')
self.d.cspline(self.v_mag, self.curvature, v_cur_fine, cur_fine)
# throttle vs vel as cubic spline for driving state
ba=991.666 #Boost acceleration magnitude
kv = np.array([0, 1410, 2300]) #velocity input
ka = np.array([1600+ba, 0+ba, 0+ba]) #acceleration ouput
kv_fine = np.linspace(0, 2300, 100) # Higher resolution
ka_fine = np.interp(kv_fine, kv, ka) # Piecewise linear high resolution of ka
self.throttle_acceleration = self.d.Var(fixed_initial=False, name='throttle_accel')
self.d.cspline(self.v_mag, self.throttle_acceleration, kv_fine, ka_fine)
# Differental equations
# Velocity diff eqs
self.d.Equation(self.vx.dt()/self.tf == (self.a*ba * self.d.cos(self.pitch)*self.jump_hist) + (self.a * self.throttle_acceleration * (1-self.jump_hist)) + (self.u_jump * self.jump_magnitude * self.d.cos(self.pitch + np.pi/2)))
self.d.Equation(self.vz.dt()/self.tf == (self.a*ba * self.d.sin(self.pitch)*self.jump_hist) - (self.g * (1-self.jump_hist)) + (self.u_jump * self.jump_magnitude * self.d.sin(self.pitch + np.pi/2)))
self.d.Equation(self.v_mag == self.d.sqrt((self.vx*self.vx) + (self.vz*self.vz)))
self.d.Equation(2300 >= self.v_mag)
# Position diff eqs
self.d.Equation(self.sx.dt()/self.tf == self.vx)
# self.d.Equation(self.sy.dt()/self.tf == self.vy)
self.d.Equation(self.sz.dt()/self.tf == self.vz)
# Orientation diff eqs
self.d.Equation(self.pitch_dot.dt()/self.tf == ((self.Tp * self.u_p) + (self.Dp * self.pitch_dot * (1 - self.d.abs2(self.u_p)))) * self.jump_hist)
self.d.Equation(self.pitch.dt()/self.tf == self.pitch_dot)
# Objective functions
# Final Position Objectives
self.d.Minimize(self.final*1e2*((self.sz-sf[1])**2)) # z final position objective
self.d.Minimize(self.final*1e2*((self.sx-sf[0])**2)) # x final position objective
# Final Velocity Objectives
# self.d.Obj(self.final*1e3*(self.vz-vf[1])**2)
# self.d.Obj(self.final*1e3*(self.vx-vf[0])**2)
# Minimum Time Objective
self.d.Minimize(1e4*self.tf)
#solve
# self.d.solve('http://127.0.0.1') # Solve with local apmonitor server
self.d.open_folder()
self.d.solve(disp=True)
self.ts = np.multiply(self.d.time, self.tf.value[0])
return self.a, self.u_p, self.ts
def getTrajectoryData(self):
return [self.ts, self.sx, self.sz, self.vx, self.vz, self.pitch, self.pitch_dot]
def getInputData(self):
return [self.ts, self.a]
# Main Code
opt = Optimizer()
s_ti = [0,0]
v_ti = 0
s_tf = [1000,500]
v_tf = [00.00, 00.0]
r_ti = 0 # inital orientation of the car
omega_ti = 0.0 # initial angular velocity of car
acceleration, turning, t_star = opt.optimize2D(s_ti, s_tf, v_ti, v_tf, r_ti, omega_ti)
# Printing stuff
# print('u', acceleration.value)
# print('tf', opt.tf.value)
# print('tf', opt.tf.value[0])
# print('u jump', opt.jump)
# for i in opt.u_jump: print(i.value)
print('u_jump', opt.u_jump.value)
print('jump his', opt.jump_hist.value)
print('v_mag', opt.v_mag.value)
print('a', opt.a.value)
# Plotting stuff
ts = opt.d.time * opt.tf.value[0]
t_max = opt.tf.value[0]
x_max = np.max(opt.sx.value)
vx_max = np.max(opt.vx.value)
z_max = np.max(opt.sz.value)
vz_max = np.max(opt.vz.value)
# plot results
fig = plt.figure(2)
ax = fig.add_subplot(111, projection='3d')
# plt.subplot(2, 1, 1)
Axes3D.plot(ax, opt.sx.value, ts, opt.sz.value, c='r', marker ='o')
plt.ylim(0, t_max)
plt.xlim(0, x_max)
plt.ylabel('time')
plt.xlabel('Position x')
ax.set_zlabel('position z')
n=5 #num plots
fig = plt.figure(3)
ax = fig.add_subplot(111, projection='3d')
# plt.subplot(2, 1, 1)
Axes3D.plot(ax, opt.vx.value, ts, opt.vz.value, c='r', marker ='o')
plt.ylim(0, t_max)
plt.xlim(-1*vx_max, vx_max)
# plt.zlim(0, 2000)
plt.ylabel('time')
plt.xlabel('Velocity x')
ax.set_zlabel('vz')
plt.figure(1)
plt.subplot(n,1,1)
plt.plot(ts, opt.a, 'r-')
plt.ylabel('acceleration')
plt.subplot(n,1,2)
plt.plot(ts, np.multiply(opt.pitch, 1/math.pi), 'r-')
plt.ylabel('pitch orientation')
plt.subplot(n, 1, 3)
plt.plot(ts, opt.v_mag, 'b-')
plt.ylabel('vmag')
plt.subplot(n, 1, 4)
plt.plot(ts, opt.u_p, 'b-')
plt.ylabel('u_p')
plt.subplot(n, 1, 5)
plt.plot(ts, opt.u_jump, 'b-')
plt.plot(ts, opt.jump_hist, 'r-')
plt.ylabel('jump(b), jump hist(r)')
plt.show()
print('asdf')
One thing to try is solve with IPOPT for initialization and then APOPT to get the integer solution. Another thing to try is to use an MPCC for a switching condition that does not rely on a binary variable. I've found the MPCC form to be much less reliable than a binary variable switching condition because the solver often gets stuck at the saddle point. However, integer solutions often take much longer to solve.
self.d.options.SOLVER=3
self.d.solve(disp=True)
self.d.options.TIME_SHIFT=0
self.d.options.SOLVER=1
self.d.solve(disp=True)
Here is the solution with IPOPT:
EXIT: Optimal Solution Found.
The solution was found.
The final value of the objective function is 506284.8987787149
---------------------------------------------------
Solver : IPOPT (v3.12)
Solution time : 7.4613000000000005 sec
Objective : 506284.8987787149
Successful solution
---------------------------------------------------
The integer solution is obtained with APOPT.
--------- APM Model Size ------------
Variable time shift OFF
Number of state variables: 1286
Number of total equations: - 1180
Number of slack variables: - 40
---------------------------------------
Degrees of freedom : 66
----------------------------------------------
Dynamic Control with APOPT Solver
----------------------------------------------
Iter: 1 I: 0 Tm: 2.72 NLPi: 92 Dpth: 0 Lvs: 3 Obj: 5.07E+05 Gap: NaN
Iter: 2 I: -1 Tm: 0.53 NLPi: 17 Dpth: 1 Lvs: 2 Obj: 5.07E+05 Gap: NaN
Iter: 3 I: -9 Tm: 47.59 NLPi: 801 Dpth: 1 Lvs: 1 Obj: 5.07E+05 Gap: NaN
Iter: 4 I: 0 Tm: 2.26 NLPi: 35 Dpth: 1 Lvs: 3 Obj: 5.08E+05 Gap: NaN
--Integer Solution: 2.54E+07 Lowest Leaf: 5.08E+05 Gap: 1.92E+00
Iter: 5 I: 0 Tm: 3.56 NLPi: 32 Dpth: 2 Lvs: 2 Obj: 2.54E+07 Gap: 1.92E+00
Iter: 6 I: -9 Tm: 54.65 NLPi: 801 Dpth: 2 Lvs: 1 Obj: 5.08E+05 Gap: 1.92E+00
Iter: 7 I: -1 Tm: 2.18 NLPi: 83 Dpth: 2 Lvs: 0 Obj: 5.08E+05 Gap: 1.92E+00
No additional trial points, returning the best integer solution
Successful solution
---------------------------------------------------
Solver : APOPT (v1.0)
Solution time : 113.5842 sec
Objective : 2.5419931399165962E+7
Successful solution
---------------------------------------------------
APOPT chooses not to jump to minimize the final objective. You may need to add a hard constraint that the vsum() of u_jump is 1. There are additional tutorials on MPCC and integer / binary forms of switching conditions in the Optimization course.
Thanks for sharing your application and keep us updated!

Fixed-Effects Regression with Panel Data - Dummy variable is excluded in Output

I'm rather new to statistics and R. I'm currently working on a paper and I'm really stuck with a coding problem right now. I suspect that the problem lays within my dummy variable.
I did a fixed-effects regression with my panel data which worked out fine. All my variables (the Y and the Xs) were numeric. I decided to add another variable that is a dummy variable with two levels (yes/no).
I set the variable as as factor variable but whenever I try to run the regression it does not show up in the output. As soon as I remove one specific numeric variable - it shows up in the output.
I obviously don't want to exclude that one numeric variable to include my dummy variable - there must be another way or something I did wrong...
regdata <- read_excel("LinRegData.xlsx")
regdata$eu <- as.factor(regdata$eu)
attach(regdata)
pdata <- pdata.frame(regdata, index=c("country","year"))
pdata$eu <-as.factor((pdata$eu))
plmwithin <- plm(subaus ~ employ + pref + + iEaeM + eu, data = pdata, model="within", family = poisson, effect = 'twoways', index = c('country', 'year'))
The output always excludes the eu-variable:
Call:
plm(formula = subaus ~ employ + pref + eu + iEaeM, data = pdata,
effect = "twoways", model = "within", index = c("country",
"year"), family = poisson)
Unbalanced Panel: n = 32, T = 8-11, N = 288
Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-0.4828507 -0.0867719 -0.0021724 0.0857117 0.7668712
Coefficients:
Estimate Std. Error t-value Pr(>|t|)
employ 0.03496136 0.00590717 5.9185 1.1e-08 ***
pref -0.02081850 0.00908030 -2.2927 0.02272 *
iEaeM -0.00010028 0.00070435 -0.1424 0.88690
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares: 9.4599
Residual Sum of Squares: 8.183
R-Squared: 0.13498
Adj. R-Squared: -0.021654
F-statistic: 12.639 on 3 and 243 DF, p-value: 1.0498e-07
>
If I exclude the iEaeM variable it shows:
Call:
plm(formula = subaus ~ employ + pref + eu, data = pdata, effect = "twoways",
model = "within", index = c("country", "year"), family = poisson)
Unbalanced Panel: n = 32, T = 8-23, N = 659
Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-1.04463 -0.18859 -0.01558 0.14696 1.46631
Coefficients:
Estimate Std. Error t-value Pr(>|t|)
employ 0.01346798 0.00525102 2.5648 0.01056 *
pref -0.00014268 0.00927955 -0.0154 0.98774
eu1 -0.27793656 0.06324072 -4.3949 1.31e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares: 64.478
Residual Sum of Squares: 61.197
R-Squared: 0.050889
Adj. R-Squared: -0.037401
F-statistic: 10.7592 on 3 and 602 DF, p-value: 6.7744e-07
>

Errors in ARIMA models

I want to fetch MAPE error of arima model after fitting model.
below is the summary of arima model
Series: train
ARIMA(1,1,1)
Coefficients:
ar1 ma1
0.4472 -0.925
s.e. 0.0310 0.014
sigma^2 estimated as 211188552: log likelihood=-14820.68
AIC=29647.36 AICc=29647.38 BIC=29662.98
Training set error measures:
ME RMSE MAE MPE MAPE MASE ACF1
Training set 413.1383 14516.15 9886.802 -17.77737 27.93304 0.9202813 -0.008861643
num [1, 1:7] 413.1 14516.1 9886.8 -17.8 27.9 ...
- attr(*, "dimnames")=List of 2
..$ : chr "Training set"
..$ : chr [1:7] "ME" "RMSE" "MAE" "MPE" ...
use this code
mape_error<-accuracy(fit)
mape_error<-data.frame(mape_error)
mape<-mape_error$MAPE
library(forecast)
This gets your point predictions, decide on an horizon(h) length
pred <- forecast(fit, h = 3)$mean
m_pred and actual(same length as h) have to be the same length
MAPE <- accuracy(m_pred, actual)[5]
RMSE<- accuracy(m_pred, actual)[2]
etc.

Minimization of Nonlinear equations

I am relatively new to R, so I apologize if my questions isn't expressed well, or if there is excessive detail. What I'm doing here is taking a naturally occurring gas isotope of C12 and C13 that is produced at a linear rate (P) at respective fractions (F12 and F13) that sums to 1. The two isotopic gases are then consumed at rates k12 for C13 and k13 for C13. I then want to solve for P and k12 using a minimization function.
The equations are:
Eqn 1: conc.12 = ((F12*P)/k12)-(((F12*P)/k12)-c12zero)exp(-k12(t-t0))
Eqn 2: conc.13 = ((F13*P)/k13)-(((F13*P)/k13)-c13zero)exp(-k13(t-t0))
Eqn 3: Sum Square Error = sum(((conc.12-c12meas)/0.07)^2) +sum(((conc.13-c13meas)/0.07)^2)
conc.12 and conc.13 are the estimated concentrations of two isotopes at time t
c12meas and c13meas are the measured concentrations of two isotopes at time t
t0 is the initial time point
F12 and F13 are fractions that sum to 1
k12 and k13 are exponential decay coefficients for the two isotopes, with k13 = k12/1.06
P is a linear production rate of both 12CH4 and 13CH4
The data for a toy data set with known approximate parameters follow:
Time c12meas c13meas
1 109.7000 19.35660
2 118.9150 18.74356
3 127.6693 18.15943
4 135.9858 17.60285
5 143.8865 17.07253
6 151.3922 16.56722
7 158.5226 16.08575
8 165.2964 15.62698
9 171.7316 15.18986
10 177.8450 14.77336
11 183.6528 14.37650
12 189.1701 13.99837
13 194.4116 13.63807
14 199.3911 13.29476
15 204.1215 12.96765
16 208.6154 12.65597
17 212.8847 12.35899
18 216.9404 12.07602
19 220.7934 11.80639
20 224.4537 11.54949
Note that the rows in reality are of equal length and the problem above has to do with pasting them in to the web portal.
I first tried to solve these equations with optim with the following code:
error.func <- function (k12, P) {
t <- Time
t0 <-Time[1]
c12zero=c12meas[1]
c13zero=c13meas[1]
k13=k12/1.06
F12=0.98
F13=1-F12
ratio.12<- (F12*P)/k12
exp.12<- exp(-k12*(t-t0))
conc.12<-ratio.12 - ((ratio.12-c12zero)*exp.12)
ratio.13<- (F13*P)/k13
exp.13<- exp(-k13*(t-t0))
conc.13<- ratio.13 - ((ratio.13-c13zero)*exp.13)
error <- sum(((conc.12-c12meas)/0.07)^2)
+sum(((conc.13-c13meas)/0.07)^2)
return (error)
}
fit.model <- optim(k12=.05, P = 15, error.func)
This is the error code in R:
"Error in optim(k12 = 0.05, P = 15, error.func) :
cannot coerce type 'closure' to vector of type 'double'
In addition: Warning message:
In optim(k12 = 0.05, P = 15, error.func) :
one-dimensional optimization by Nelder-Mead is unreliable:
use "Brent" or optimize() directly"
My intepretation of this is that the optim function can't solve multiple equations at the same time, so I then tried the solnp function.
isotopes2<- function(x) {
t=Time
t0<-Time[1]
c12zero=c12meas[1]
c13zero=c13meas[1]
k13=x[1]/1.06
F12=0.98
F13=1-F12
ratio.12<- (F12*x[2])/x[1]
exp.12<- exp(-x[1]*(t-t0))
conc.12<-ratio.12 - ((ratio.12-c12zero)*exp.12)
ratio.13<- (F13*x[2])/k13
exp.13<- exp(-k13*(t-t0))
conc.13<- ratio.13 - ((ratio.13-c13zero)*exp.13)
}
error.func <- function (x) {
t <- Time
t0<-Time[1]
c12zero=c12meas[1]
c13zero=c13meas[1]
k13=x[1]/1.06
F12=0.98
F13=1-F12
ratio.12<- (F12*x[2])/x[1]
exp.12<- exp(-x[1]*(t-t0))
conc.12<-ratio.12 - ((ratio.12-c12zero)*exp.12)
ratio.13<- (F13*x[2])/k13
exp.13<- exp(-k13*(t-t0))
conc.13<- ratio.13 - ((ratio.13-c13zero)*exp.13)
error <- sum(((conc.12-c12meas)/0.07)^2)
+sum(((conc.13-c13meas)/0.07)^2)
return (error)
}
x0 <- c(0.05,15)
constraint = c(0)
fit <- solnp (x0, fun = isotopes2, eqfun = error.func, eqB=0)
I received the following error message:
"Error:
solnp-->error: objective function returns value of length greater than 1!

Resources