rxjs interval will execute if another 2 observables are true - rxjs

I'm writing an angular15 app with a youtube player component in it, i'm trying to work with rxjs but i think that i have one issue that i got wrong, the mergeMap. i'm really new to rxjs so sorry for any mistakes
I have 2 subscriptions, one for if youtube library as finished loading, and the other if the youtube player is ready.
first lets look just at the interval:
this.YTSubscription=interval(100).pipe(
exhaustMap((x, y)=>{
this.currentTimeSubject.next(this.player.getCurrentTime());
this.isPlayingSubject.next(this.player.getPlayerState() === YT.PlayerState.PLAYING);
this.isMutedSubject.next(this.player.isMuted());
this.volumeSubject.next(this.player.getVolume());
return of(true);
}),
).subscribe({next: (data )=>{
},
error: (err)=> {
this.YTSubscription?.unsubscribe();
}
});
this works fine, it runs in intervals on 100ms and i use exhaustMap to make sure that the next iteration will be executed only if the previous one completed in case when i'll add more calculations it may take more than 100 ms.
next i want in the interval to check if youtube is loaded, for that i have the observable isYouTubeLoaded, so i tried using mergeMap for this.. i guess this is not the right way? but it still worked:
this.YTSubscription=interval(100).pipe(
mergeMap(x => this.isYouTubeLoaded),
exhaustMap((x, y)=>{
if (!x) {
return of(false);
}
...
now x inside exahustMap contains the isYouTubeLoaded and this does the job.
now i have another observable that i want to check and only if both of them are true to run the interval, if not to wait for the next iteration, this is where i get lost because if i add another mergeMap i can't see both values in exhaustMap.
so from reading some more i assume that i'm not supposed to use mergeMap at all, maybe filter ? but i still have no clue how to do that with 2 observables.
any ideas?

I'm not entirely sure, what you want to do, but I'll try to answer this part of your question:
now i have another observable that i want to check and only if both of them are true to run the interval, if not to wait for the next iteration, this is where i get lost because if i add another mergeMap i can't see both values in exhaustMap.
combineLatest([src1, src2]).pipe( // check both
filter(([ok1, ok2]) => ok1 && ok2), // only if both are true
switchMap(() => timer(...) // run the timer
).subscribe(...);

#churill really helped, in the end i need two pipes and not 3 but the implementation is the same, still marking his answer as the correct one, just showing here the resulting code:
this.YTSubscription=combineLatest([interval(100), this.isYouTubeLoaded]).pipe(
map(([intr, loaded])=>(loaded)),
filter((loaded)=> (loaded)),
exhaustMap(()=>{
try {
if (this.player.getPlayerState() === YT.PlayerState.UNSTARTED) {
return of(false);
}
} catch (e) {
return of(false);
}
this.currentTimeSubject.next(this.player.getCurrentTime());
this.isPlayingSubject.next(this.player.getPlayerState() === YT.PlayerState.PLAYING);
this.isMutedSubject.next(this.player.isMuted());
this.volumeSubject.next(this.player.getVolume());
return of(true);
}),
).subscribe({next: (isUpdated)=>{
},
error: (err)=> {
console.error(err);
}
});

Related

MergeMap from Array of Observables

TLDR: Working example is in the last codeblock of this question. Check out #bryan60 answer for a working example using concat rather than mergeMap.
I'm trying to run a number of remote requests sequentially, but only the first observable is executed.
The number of request vary, so I can't do a dodgy solution where I nest observables within each other.
I'm using the following code:
const observables = [
observable1,
observable2,
...
];
from(observables).pipe(
mergeMap(ob=> {
return ob.pipe(map(res => res));
}, undefined, 1)
).subscribe(res => {
console.log('Huzzah!');
})
In the past (rxjs 5.5) Ive used the following:
let o = Observable.from(observables).mergeMap((ob) => {
return ob;
}, null, 1);
o.subscribe(res => {
console.log('Huzzah!');
})
I'm not sure what I'm doing wrong, can anybody shed some light?
An additional request would be to only print 'Huzzah!' once on completion of all requests rather than for each individual Observable.
EDIT:
Removing undefined from my original code will make it work, however there was another issue causing only the first observable to be executed.
I'm using Angular's HttpClient for remote requests. My observable code looked like this:
const observables = [];
// Only the first observable would be executed
observables.push(this.http.get(urla));
observables.push(this.http.get(urlb));
observables.push(this.http.get(urlc));
Adding .pipe(take(1)) to each observable results in each observable being executed:
const observables = [];
// All observables will now be executed
observables.push(this.http.get(urla).pipe(take(1));
observables.push(this.http.get(urlb).pipe(take(1));
observables.push(this.http.get(urlc).pipe(take(1));
The code I ended up using, which executes all observables in sequential order and only triggers Huzzah! once is:
const observables = [];
observables.push(this.http.get(urla).pipe(take(1));
observables.push(this.http.get(urlb).pipe(take(1));
observables.push(this.http.get(urlc).pipe(take(1));
from(observables).pipe(
mergeMap(ob=> {
return ob.pipe(map(res => res));
}, 1),
reduce((all: any, res: any) => all.concat(res), [])
).subscribe(res => {
console.log('Huzzah!');
})
Thanks to #bryan60 for helping me wit this issue.
if these are http requests that complete, I think your bug is caused by a change to the mergeMap signature that removed the result selector. it's hard to be sure without knowing exactly which version you're on as it was there, then removed, then added again, and they're removing it once more for good in v7.
if you want to run them sequentially... this is all you need...
// concat runs input observables sequentially
concat(...observables).subscribe(res => console.log(res))
if you want to wait till they're all done to emit, do this:
concat(...observables).pipe(
// this will gather all responses and emit them all when they're done
reduce((all, res) => all.concat([res]), [])
// if you don't care about the responses, just use last()
).subscribe(allRes => console.log(allRes))
In my personal utility rxjs lib, I always include a concatJoin operator that combines concat and reduce like this.
the only trick is that concat requires observables to complete till it moves on to the next one, but the same is true for mergeMap with concurrent subscriptions set to 1.. so that should be fine. things like http requests are fine, as they complete naturally after one emission.. websockets or subjects or event emitters will behave a bit differently and have to be manually completed, either with operators like first or take or at the source.
If you are not concerned about the sequence of execution and just want 'Huzzah!' to be printed once all the observable has been executed forkJoin can also be used.Try this.
forkJoin(...observables).subscribe(res => console.log('Huzzah');

Does Observable.race for two observables work more than one time?

Tasks is: I have two effects (ngrx/store), let's say ef1$ and ef2$, which are Observables. In angular component I would like to detect which one is triggered. I added the following code:
Observable.race(ef1$, ef2$)
.subscribe((payload) => {
if (payload.type == ThreadActions.THREAD_READY_TO_BE_RENDERED) {
// do one thing
}
else if (payload.type == ThreadActions.THREAD_ITEM_READY_TO_BE_RENDERED) {
// do another thing
}
});
But it looks like that after first emit of any effects Observable.race is going to be dead and no reaction more on additional emits, despite of I sure that effect executes again and again.
It's hard to tell what is you desired functionality but if you want to use the race operator multiple times you'll need to complete the chain when it emits a resubscribe immediately:
Observable.defer(() => Observable.race(ef1$, ef2$))
.take(1)
.repeat()
.subscribe(...);
Observable.race() will only emit whichever the emission comes first.
If you want two Observable streams and observe them concurrently aka you do not care whoever will be emitting, use Observable.combineLatest:
Observable.combineLatest(ef1$, ef2$)
.subscribe(([ef1,ef2]) => {
//ef1.type will be ThreadActions.THREAD_READY_TO_BE_RENDERED
//ef2.type will be ThreadActions.THREAD_ITEM_READY_TO_BE_RENDERED
//check if ef1 is truthy
if(ef1){
//do one thing
}
if(ef2){
//do another thing
}
});

Pattern for Observables that includes acknowledgement

I'm working on something that is recording data coming from a queue. It was easy enough to process the queue into an Observable so that I can have multiple endpoints in my code receiving the information in the queue.
Furthermore, I can be sure that the information arrives in order. That bit works nicely as well since the Observables ensure that. But, one tricky bit is that I don't want the Observer to be notified of the next thing until it has completed processing the previous thing. But the processing done by the Observer is asynchronous.
As a more concrete example that is probably simple enough to follow. Imagine my queue contains URLs. I'm exposing those as an Observable in my code. The I subscribe an Observer whose job is to fetch the URLs and write the content to disk (this is a contrived example, so don't take issue with these specifics). The important point is that fetching and saving are async. My problem is that I don't want the observer to be given the "next" URL from the Observable until they have completed the previous processing.
But the call to next on the Observer interface returns void. So there is no way for the Observer to communicate back to me that has actually completed the async task.
Any suggestions? I suspect there is probably some kind of operator that could be coded up that would basically withhold future values (queue them up in memory?) until it somehow knew the Observer was ready for it. But I was hoping something like that already existed following some established pattern.
similar use case i ran into before
window.document.onkeydown=(e)=>{
return false
}
let count=0;
let asyncTask=(name,time)=>{
time=time || 2000
return Rx.Observable.create(function(obs) {
setTimeout(function() {
count++
obs.next('task:'+name+count);
console.log('Task:',count ,' ', time, 'task complete')
obs.complete();
}, time);
});
}
let subject=new Rx.Subject()
let queueExec$=new Rx.Subject()
Rx.Observable.fromEvent(btnA, 'click').subscribe(()=>{
queueExec$.next(asyncTask('A',4000))
})
Rx.Observable.fromEvent(btnB, 'click').subscribe(()=>{
queueExec$.next(asyncTask('B',4000))
})
Rx.Observable.fromEvent(btnC, 'click').subscribe(()=>{
queueExec$.next(asyncTask('C',4000))
})
queueExec$.concatMap(value=>value)
.subscribe(function(data) {
console.log('onNext', data);
},
function(error) {
console.log('onError', error);
},function(){
console.log('completed')
});
What you describe sounds like "backpressure". You can read about it in RxJS 4 documentation https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/backpressure.md. However this is mentioning operators that don't exist in RxJS 5. For example have a look at "Controlled Observables" that should refer to what you need.
I think you could achieve the same with concatMap and an instance of Subject:
const asyncOperationEnd = new Subject();
source.concatMap(val => asyncOperationEnd
.mapTo(void 0)
.startWith(val)
.take(2) // that's `val` and the `void 0` that ends this inner Observable
)
.filter(Boolean) // Always ignore `void 0`
.subscribe(val => {
// do some async operation...
// call `asyncOperationEnd.next()` and let `concatMap` process another value
});
Fro your description it actually seems like the "observer" you're mentioning works like Subject so it would make maybe more sense to make a custom Subject class that you could use in any Observable chain.
Isn't this just concatMap?
// Requests are coming in a stream, with small intervals or without any.
const requests=Rx.Observable.of(2,1,16,8,16)
.concatMap(v=>Rx.Observable.timer(1000).mapTo(v));
// Fetch, it takes some time.
function fetch(query){
return Rx.Observable.timer(100*query)
.mapTo('!'+query).startWith('?'+query);
}
requests.concatMap(q=>fetch(q));
https://rxviz.com/v/Mog1rmGJ
If you want to allow multiple fetches simultaneously, use mergeMap with concurrency parameter.

RxJS v5 Pausable Observable Interval

With the pausable operator not implemented in RxJS v5, is there a better way to create a pausable interval? The code below works, but does so by keeping track of the last emitted value as an offset. It seems like there should be a better way...
const source = Rx.Observable.interval(100).share()
const offset = new Rx.BehaviorSubject(0)
let subscription;
let currentValue;
function start() {
subscription = source
.subscribe(i => {
currentValue = i + offset.value
})
}
function pause() {
source.take(1).subscribe(i => offset.next(i + offset.value))
subscription.unsubscribe()
}
The share() operator is an alias for .publish().refCount(). The refCount() means that the observable will clean itself up when no other subscribers to it exist. Because you're unsubscribing from source, it will clean itself up, then restart when subscribed to again. Use publish() with connect() instead. Here's the code:
const source = Observable.interval(100).publish();
source.connect();
// Start with false, change to true after 200ms, then false again
// after another 200ms
const pauser = Observable.timer(200)
.mapTo(true)
.concat(Observable.timer(200).mapTo(false))
.startWith(false);
const pausable = pauser
.switchMap(paused => (paused ? Observable.never() : source))
.take(10);
pausable.subscribe(x => console.log(x));
See this jsbin for a running example: http://jsbin.com/jomusiy/3/edit?js,console.
There's no general purpose way to do this. It depends on what exactly you mean by pausing and also what you're pausing. (Do you want to just stop emitting and then start again, do you buffer and drain, or do you effectively need to add a delay to the upstream, but otherwise preserve the distribution of upstream values in time?)
I have a way to do this in an efficient manner when the upstream is specifically a timer, as it is in your example. It is the answer to my own question here.
RxJS (5.0rc4): Pause and resume an interval timer
This one has the great advantage of preserving the source's value distribution in time, but just adding a delay to it.
For more general cases:
For cold observables: switch between a never and upstream. On pause, unsubscribe from upstream. skip ones that you've seen, and then switch to the skiped stream. While unpaused you must maintain a count of how many values you've emitted, so that you can skip that many the next time someone unpauses. You only have to remember how many you've seen before. However, every unpause causes the cold observable to replay from the beginning. This could be very inefficient in the general case. The code would look something like this. pauser here would be a Subject that you can set to true or false to pause upstream.
function pausableCold(pauser, upstream) {
var seen = 0;
return pauser.switch(paused => {
if (paused) {
return Observable.never();
}
else {
return upstream.skip(seen).do(() => seen++);
}
});
}
For hot or cold observables, you can use buffering. buffer while paused and then drain and concat to the hot upstream when unpaused. (This preserves all the values but but it doesn't preserve their distribution in time. Also, you should hot upstream with publish if it could be cold.)
The most efficient way is not really part of the Rx. What you really want is to tell the source to stop emitting and then start again. The way you do that is very specific to what the source is and how the source is generating values.

RxJS: (Time) Buffer that starts after next emittion

I wonder how to implement this properly with RxJs (4/5)?
-a-- -b----c----d-----------------------------------------------------------e------f---------------------
-5-sec after-"a"--> [abcd]---new 5 sec timer will start when "e" emited-----5 sec-after-"e"->[ef]-
I think this:
.buffer(source$.throttleTime(5000).debounceTime(5000))
do the job in rxjs 5
Your best shot is to use buffer. The buffer has a closing condition, and you'd like a closing condition 5 seconds after a new item was introduced. So, lets suppose you have a source stream, your desired stream will be:
source.buffer(source.throttle(5100).debounce(5000));
This is rxjs 4. I think rxjs has a slightly different buffer operators but the idea is the same.
Explanation:
The throttle ensures that for 5100 mSecs you will get only the first "tick". The debounce will propagate this "tick" after 5000 mSecs because there were no other "ticks" since. Note that I chose 5100 mSecs since the timing is not always perfect and if you use 5000 mSecs for both, the debounce might be repeatedly delayed and you'll get starvation. Anyways, your buffer will not loose data, just might group it in chunks bigger than 5000 mSecs.
Rxjs 5 has a bufferToggle operator which might look a better option, yet, the fact that you both open and close the buffer might become risky and make you loose data due to timing issues.
I am using RxJS 6 and could not readily find the documentation for 5. However, this is a fantastic question. Here was my result which is also demonstrated in a real example reproducing a bug in Angular Material.
source$ = source$.pipe(buffer(source$.pipe(debounceTime(5000))));
Having tried all Rxjs 5 buffer variants, in particular bufferTime which emits every n seconds empty or not, I ended up rolling my own bufferTimeLazy:
function bufferTimeLazy(timeout) {
return Rx.Observable.create(subscriber => {
let buffer = [], hdl;
return this.subscribe(res => {
buffer.push(res);
if (hdl) return;
hdl = setTimeout(() => {
subscriber.next(buffer);
buffer = [];
hdl = null;
}, timeout);
}, err => subscriber.error(err), () => subscriber.complete());
});
};
// add operator
Rx.Observable.prototype.bufferTimeLazy = bufferTimeLazy;
// example
const click$ = Rx.Observable.fromEvent(document, 'click');
click$.bufferTimeLazy(5000).subscribe(events => {
console.log(`received ${events.length} events`);
});
Example:
https://jsbin.com/nizidat/6/edit?js,console,output
The idea is to collect events in a buffer and emit the buffer n seconds after first event. Once emitted, empty buffer and remain dormant until next event arrives.
If you prefer not to add operator to Observable.prototype, just invoke the function:
bufferTimeLazy.bind(source$)(5000)
EDIT:
Ok, so it's not all bad with Rxjs 5:
var clicks = Rx.Observable.fromEvent(document, 'click').share();
var buffered = clicks.bufferWhen(() => clicks.delay(5000));
buffered.subscribe(x => console.log(`got ${x.length} events`));
Achieves the same. Notice share() to avoid duplicate click subscriptions - YMMV.
As Trevor mentioned, in RXJS 6 there is no official way but clearly you need to use debounce + buffer in order to achieve that result.
To make things properly, in Typescript and with Type Inference, I created a custom OperatorFunction called bufferDebounce that makes a lot easier to use and understand this operator.
The snippet with type inference
type BufferDebounce = <T>(debounce: number) => OperatorFunction<T, T[]>;
const bufferDebounce: BufferDebounce = debounce => source =>
new Observable(observer =>
source.pipe(buffer(source.pipe(debounceTime(debounce)))).subscribe({
next(x) {
observer.next(x);
},
error(err) {
observer.error(err);
},
complete() {
observer.complete();
},
})
// [as many sources until no emit during 500ms]
source.pipe(bufferDebounce(500)).subscribe(console.log)
You can try it in this working example: https://stackblitz.com/edit/rxjs6-buffer-debounce

Resources