For example, I have kmeans code
program read_from_file
use functions_module
!$ use omp_lib
character(len=2) :: c2
integer :: i, j, k, l, c, d
real, dimension(:,:), allocatable :: r, centroid, new_centro, converge
real, dimension(:), allocatable :: cost
integer,dimension(:),allocatable :: indices,distancereg,cluster
integer :: ios_read = 0
integer :: n = 0
integer :: omega, tid, n_threads
real, dimension(:,:), allocatable :: comparison_value
print *, 'which data index?'
read*, idx
write(c2, '(i2.2)') idx
open(unit=99, file='datatest1.dat', iostat=ios_read)
if (ios_read /= 0) then
print *, "kmeans_data_distrib_"//c2//"_small.dat could not be opened"
! print
end if
!find the maximum lines
do
read(99, *, iostat=ios_read) i, x, y
if (ios_read > 0) then
print *, "something is wrong"
stop
else if (ios_read < 0) then
print *, "end of file reached"
exit
else
n = n+1
end if
end do
rewind(99)
!do i=1,n
open(unit=98, file='rawdata.dat')
allocate(r(2, n))
do i = 1,n
read(99, *, iostat=ios_read) j, x, y
r(1, j) = x
r(2, j) = y
write(98, *) x, y
end do
close(99) ! close kmeans
close(98) ! close rawdatai
print*, 'put k'
read*, k
allocate (comparison_value(2,k))
comparison_value = 0.02
** do l=1,10
call centroid_inits(r, n, k, centroid)
call min_distance(r, n, k, centroid, distance,indices,distancereg)
call new_centroid(r,n,k,centroid,indices,new_centro,omega)
call costfunction(r,n,k,distancereg,indices,new_centro,cluster,cost)
end do
open(unit=99,file="kmeans3_test.dat")
do i = 1, n
write(99,"(2es14.5,i4)") r(:,i),indices(i)
enddo
close(99)
Contains
subroutine centroid_inits(r,n,k,centroid)
real,dimension (:,:),intent(in),allocatable :: r
real,dimension (:,:),intent(out),allocatable:: centroid
real,dimension(k),allocatable::xc(:) ,yc(:)
integer,intent(in) :: n,k
integer :: i
real :: maks_x,maks_y,min_x,min_y
allocate(centroid(2, k))
allocate(xc(k))
allocate(yc(k))
maks_x = maxval(r(1,:))
maks_y = maxval(r(2,:))
min_x = minval(r(1,:))
min_y = minval(r(2,:))
! print *, min_x, maks_x, min_y, maks_y
do i = 1,k
xc (i) = min_x + (maks_x - min_x) * fib_rnd()
yc (i) = min_y + (maks_y - min_y) * fib_rnd()
centroid (1,i) = xc(i)
centroid (2,i) = yc(i)
end do
do i = 1,k
print *, centroid(:,i)
end do
end subroutine centroid_inits
subroutine min_distance(r,n,k,centroid,distance,indices,distancereg)
integer, intent(out):: n,k
real,dimension(:,:),intent(in),allocatable::centroid
real,dimension(:,:),intent(in),allocatable::r
integer,dimension(:),intent(out),allocatable::indices,distancereg
real ::d_min
integer::y,i_min,j,i
integer,parameter :: data_dim=2
allocate (indices(n))
allocate (distancereg(k))
!cost=0.d0
do j=1,n
i_min = -1
d_min=1.d6
! !$ OMP DO
do i=1,k
distance=0.d0
distancereg(i)=0.d0
do y=1,data_dim
distance = distance+abs(r(y,j)-centroid(y,i))
distancereg(i)=distancereg(i)+abs(r(y,j)-centroid(y,i))
end do
if (distance<d_min) then
d_min=distance
i_min=i
end if
end do
!!$OMP END DO
if( i_min < 0 ) print*," found error by assigning k-index to particle ",j
indices(j)=i_min
end do
end subroutine
subroutine new_centroid(r,n,k,centroid,indices,new_centro,omega)
integer, intent(in):: n
real,dimension(:,:),intent(inout),allocatable ::centroid
real,dimension(:,:),intent(in),allocatable ::r
integer,dimension(:),intent(in),allocatable::indices
real,dimension(:,:),intent(out),allocatable:: new_centro
integer,intent(inout)::k
integer :: t,y,j,k_ind
integer,intent(out) :: omega
real,dimension(:),allocatable :: summ
allocate(summ(2))
allocate (new_centro(2,k))
t=2
do k_ind=1,k
omega = count(indices==k_ind)
summ(1)=0
summ(2)=0
do j=1,n
if (indices(j)==k_ind) then
summ(1) =+ r(1,j)
summ(2) =+ r(2,j)
end if
end do
new_centro(1,k_ind) = summ(1)/omega
new_centro(2,k_ind) = summ(2)/omega
end do
centroid = new_centro
!do k_ind=1,k
!print*, 'new centro',new_centro(:,k_ind)
!end do
end subroutine
subroutine costfunction(r,n,k,distancereg,indices,new_centro,cluster,cost)
integer, dimension (:), allocatable, intent(out) :: distancereg, indices
integer, dimension (:), allocatable, intent(out) :: cluster
real, dimension (:,:), allocatable, intent(in) :: r
real, dimension (:,:), intent(in), allocatable :: new_centro
real, dimension(:), intent(out), allocatable :: cost
integer :: i,k
allocate(cluster(k))
allocate(cost(k))
allocate(distancereg(k))
call min_distance(r,n,k,centroid,distance,indices,distancereg)
cluster = 0
do i=1,k
cost(i)=0
cluster(i)=count(indices==i)
cost(i)=(1.0/cluster(i))*distancereg(i)
! print*,cost(i)
end do
print*," total sum of cluster members ",sum(cluster)," vs N ",n
end subroutine
subroutine convergence_value(converge, centroid, new_centro, cost, cluster)
real, dimension (:,:), intent(inout), allocatable :: new_centro
real, dimension (:,:), intent(inout), allocatable :: centroid
real, dimension(:), allocatable, intent(out):: cost
integer, dimension (:), allocatable, intent(out) :: cluster
real, dimension(:,:), intent (inout), allocatable:: converge
allocate(converge(2,k))
call centroid_inits(r, n, k, centroid)
call min_distance(r, n, k, centroid, distance,indices,distancereg)
call new_centroid(r,n,k,centroid,indices,new_centro,omega)
converge = (abs(centroid-new_centro))
print*, 'this is c',converge
end subroutine
end program read_from_file
It runs okay with serial. But I want to apply openmp. I want to each thread doing the same calculation and find which thread have better cost function and time. (all thread doing the clusterization). My attemp and idea is to paralellized the code before encounter the subroutine, that two asterisk. But I do not know if its enough (though I tried it and showing error), and how do make display report of each thread ?
*You might notice from the code that I am a beginner
Related
As shown below, this code snippet aims to compute two arrays, i.e. data_real and data_imag. Their shapes are both 1024*10000. I want to speed up the computation of DO loops by using OpenMP. But I'm an absolute beginner of openMP. I am not very clear how to parallelizing a loop with dependent iterations, such as the statements temp2 = dx * temp1(2*i), temp3 = dx * temp1(2*i+1) of the snippet below. I mean, if there are race conditions in this code snippet.
Is there a way to speed up the do loops as shown below?
Note: Four1 is the subroutine used to perform FFT, sinc2 is the square of the sinc function.
!Declare variables
Real, Allocatable, Dimension(:,:) :: data_complex, data_real, data_imag
Real, Dimension(0:2*1024-1) :: temp1
Real :: temp2, temp3
!Allocate
Allocate( data_real(0:1024-1,0:10000-1), &
data_imag(0:1024-1,0:10000-1), &
data_complex(0:2*1024-1,0:10000-1), STAT=istat1 )
!Initialise
data_real = 0.0
data_imag = 0.0
data_complex = 0.0
dk = 2*3.14159 / 75.0
!$OMP Parallel num_threads(24) private(i,j,k,temp1,temp2,temp3) shared( dk)
!$OMP Do schedule(dynamic,1)
Do j = 0, 10000-1
temp1(:) = data_complex(:,j)
Call Four1(temp1, 1024, 1) ! Calling the subroutine 'Four1' to
! perform Fast Fourier Transform
Do i = 0, 1023
k = dk * Real(i)
temp2 = dx * temp1(2*i)
temp3 = dx * temp1(2*i+1)
data_real(i,j) = temp2 / sinc2( dx * k / 2 ) ! sinc2(x) = sin(x) / x
data_imag(i,j) = temp3 / sinc2( dx * k / 2 )
End Do
End Do
!$OMP End Do nowait
!$OMP End Parallel
! --------------------------------------------------------------- !
! ----------------------------------------------------------------!
Subroutine Four1(data_complex, nn, isign)
Integer, Intent(in) :: nn
Integer, Intent(in) :: isign
Real, Intent(inout), Dimension(2*nn) :: data_complex
Integer :: i, istep, j, m, mmax, n
Real :: tempi, tempr
Real(8) :: theta, wi, wpi, wpr, wr, wtemp
! ---------------------------------------------------------
n=2*nn
j=1
Do i=1,n,2
If(j>i) then
tempr=data_complex(j)
tempi=data_complex(j+1)
data_complex(j)=data_complex(i)
data_complex(j+1)=data_complex(i+1)
data_complex(i)=tempr
data_complex(i+1)=tempi
endif
m=n/2
Do while ( (m>=2).and.(j>m) )
j=j-m
m=m/2
End do
j=j+m
EndDo
mmax=2
Do while ( n > mmax )
istep=2*mmax
theta=(2*pi)/(isign*mmax)
wpr=-2.0d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.0d0
wi=0.0d0
Do m=1,mmax,2
Do i=m,n,istep
j=i+mmax
tempr=Real(wr)*data_complex(j)-Real(wi)*data_complex(j+1)
tempi=Real(wr)*data_complex(j+1)+Real(wi)*data_complex(j)
data_complex(j)=data_complex(i)-tempr
data_complex(j+1)=data_complex(i+1)-tempi
data_complex(i)=data_complex(i)+tempr
data_complex(i+1)=data_complex(i+1)+tempi
End Do
wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
End Do
mmax=istep
End Do
End Subroutine Four1
! ------------------------------------------------------------ !
! ------------------------------------------------------------ !
Real Function sinc2 ( x )
!
! Define the square of sinc function
!
Real, Intent(in) :: x
If ( abs(x) < 1.e-16 ) then
! be careful with comparison to real numbers because of rounding errors
! better: if (abs(x).lt.1.e-16) thensinc=1.
sinc2 = 1.0
Else
sinc2 = ( sin(x)/x )**2
End If
End Function sinc2
I am wondering what is the proper way to handle constants in OpenACC kernels.
For example, in the following code
module vecaddmod
implicit none
integer, parameter :: n = 100000
!$acc declare create(n)
contains
subroutine vecaddgpu(r, a, b)
real, dimension(:) :: r, a, b
integer :: i
!$acc update self(n)
!$acc data present(n)
!$acc kernels loop copyin(a(1:n),b(1:n)) copyout(r(1:n))
do i = 1, n
r(i) = a(i) + b(i)
enddo
!$acc end data
end subroutine vecaddgpu
end module vecaddmod
program main
use vecaddmod
implicit none
integer :: i, errs, argcount
real, dimension(:), allocatable :: a, b, r, e
character*10 :: arg1
allocate( a(n), b(n), r(n), e(n) )
do i = 1, n
a(i) = i
b(i) = 1000*i
enddo
! compute on the GPU
call vecaddgpu( r, a, b )
! compute on the host to compare
do i = 1, n
e(i) = a(i) + b(i)
enddo
! compare results
errs = 0
do i = 1, n
if( r(i) /= e(i) )then
errs = errs + 1
endif
enddo
print *, errs, ' errors found'
if( errs ) call exit(errs)
end program main
n is declared as a constant on CPU in a module, and it is used as the range in the loop. nvfortran warns me about Constant or Parameter used in data clause. Is the above example the proper way to handle this? Can I take advantage of the constant memory on GPU, such that I don't need to copy it from CPU to GPU for each kernel launch?
Thanks.
The compiler will replace parameters with the literal value so no need to put them in data regions.
module vecaddmod
implicit none
integer, parameter :: n = 100000
contains
subroutine vecaddgpu(r, a, b)
real, dimension(:) :: r, a, b
integer :: i
!$acc kernels loop copyin(a(1:n),b(1:n)) copyout(r(1:n))
do i = 1, n
r(i) = a(i) + b(i)
enddo
end subroutine vecaddgpu
end module vecaddmod
...
% nvfortran -acc -Minfo=accel test.f90
vecaddgpu:
11, Generating copyin(a(:100000)) << "n" is replaced with 100000
Generating copyout(r(:100000))
Generating copyin(b(:100000))
12, Loop is parallelizable
Generating Tesla code
12, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
I wrote the following code, and then tried using OpenMP to parallelise it. However, after I compiled the following OpenMP code using f2py, Python always generates certain errors when I run it. There are no error messages, only that the numbers are a bit off, and whenever I compile it with f2py and run it in Python, it kills the kernel.
I am wondering if this has anything to do with my parallel region. I am always a bit confused about which variables to take private so can anyone observe any errors?
subroutine simulate_omp(m,nt,s0,l,d,a,numthreads,x,y,psi)
!Pedestrian motion model
!input variables:
!n = m^2 = number of students
!nt: number of time steps
!s0: student speed
!l: initial spacing between students
!d: student motion influence by all other students within distance <= d
!a: noise amplitude
!numthreads: number of threads to use in parallel regions
!output variables:
!x,y: all m^2 student paths from i=1 to nt+1
!psi: synchronization parameter, store at all nt+1 times (including initial
condition)
use omp_lib
implicit none
integer, intent(in) :: m,nt,numthreads
real(kind=8), intent(in) :: s0,l,d,a
real(kind=8), dimension(m*m,nt+1), intent(out) :: x,y
real(kind=8), dimension(nt+1), intent(out) :: psi
real(kind=8), dimension(m*m,nt+1) :: xtemp,ytemp,u,v
real(kind=8), dimension(m*m,nt) :: usum,vsum,umean,vmean
real(kind=8) :: r(m*m)
real(kind=8),parameter :: pi = 4*atan(1.0_8)
integer :: i1,j1,k1,i2,j2,k2,count
!$call omp_set_num_threads(numthreads)
! initialize student positions
x = 0.d0
y = 0.d0
k1 = 0
do i1 = 1,m
do j1=1,m
k1 = k1 + 1
x(k1,1) = (j1-1)*l/2 - (m-1)*l/4
y(k1,1) = (i1-1)*l/2 - (m-1)*l/4
end do
end do
x(:,1) = x(:,1)/(m-1)
y(:,1) = y(:,1)/(m-1)
! initialize
xtemp(:,1) = x(:,1)
ytemp(:,1) = y(:,1)
call random_number(r)
u(:,1) = s0*cos(r*2*pi-pi)
v(:,1) = s0*sin(r*2*pi-pi)
psi(1) = sqrt(sum(u(:,1))**2+sum(v(:,1)**2))/dble(m)/dble(m)/s0
do i2 = 1,nt
!$OMP parallel do private(j2,k2,l)
do j2 = 1,m*m
usum(j2,i2) = 0
vsum(j2,i2) = 0
count = 0
!$OMP parallel do reduction(+:usum,vsum,count)
do k2 = 1,m*m
if ((xtemp(k2,i2)-xtemp(j2,i2))**2+(ytemp(k2,i2)-ytemp(j2,i2))**2<=d**2)
then
usum(j2,i2) = usum(j2,i2)+u(k2,i2)
vsum(j2,i2) = vsum(j2,i2)+v(k2,i2)
count = count+1
end if
end do
!$OMP end parallel do
umean(j2,i2) = usum(j2,i2)/dble(count)
vmean(j2,i2) = vsum(j2,i2)/dble(count)
u(j2,i2+1) = s0*cos(atan(vmean(j2,i2)/umean(j2,i2))+a*(r(j2)*2*pi-pi))
v(j2,i2+1) = s0*sin(atan(vmean(j2,i2)/umean(j2,i2))+a*(r(j2)*2*pi-pi))
xtemp(j2,i2+1) = xtemp(j2,i2)+u(j2,i2+1)
ytemp(j2,i2+1) = ytemp(j2,i2)+v(j2,i2+1)
! boundary conditions
if (xtemp(j2,i2+1)>l) then
xtemp(j2,i2+1) = xtemp(j2,i2+1)-2*l
else
if (xtemp(j2,i2+1)<-l) then
xtemp(j2,i2+1) = xtemp(j2,i2+1)+2*l
end if
end if
if (ytemp(j2,i2+1)>l) then
ytemp(j2,i2+1) = ytemp(j2,i2+1)-2*l
else
if (ytemp(j2,i2+1)<-l) then
ytemp(j2,i2+1) = ytemp(j2,i2+1)+2*l
end if
end if
end do
!$OMP end parallel do
psi(i2+1) = sqrt(sum(u(:,i2+1))**2+sum(v(:,i2+1))**2)/dble(m)/dble(m)/s0
end do
x(:,1:nt+1) = xtemp(:,1:nt+1)
y(:,1:nt+1) = ytemp(:,1:nt+1)
end subroutine simulate_omp
The argument l is declared with intent(in) and not modified in the loop so there is no need to declare it private. Below is a suggestion without the outer parallel loop:
subroutine simulate_omp(m,nt,s0,l,d,a,numthreads,x,y,psi)
!Pedestrian motion model
!input variables:
!n = m^2 = number of students
!nt: number of time steps
!s0: student speed
!l: initial spacing between students
!d: student motion influence by all other students within distance <= d
!a: noise amplitude
!numthreads: number of threads to use in parallel regions
!output variables:
!x,y: all m^2 student paths from i=1 to nt+1
!psi: synchronization parameter, store at all nt+1 times (including initial
condition)
use omp_lib
implicit none
integer, intent(in) :: m,nt,numthreads
real(kind=8), intent(in) :: s0,l,d,a
real(kind=8), dimension(m*m,nt+1), intent(out) :: x,y
real(kind=8), dimension(nt+1), intent(out) :: psi
real(kind=8), dimension(m*m,nt+1) :: xtemp,ytemp,u,v
real(kind=8), dimension :: usum,vsum,umean,vmean
real(kind=8) :: r(m*m)
real(kind=8),parameter :: pi = 4*atan(1.0_8)
integer :: i1,j1,k1,i2,j2,k2,count
!$call omp_set_num_threads(numthreads)
! initialize student positions
x = 0.d0
y = 0.d0
k1 = 0
do i1 = 1,m
do j1=1,m
k1 = k1 + 1
x(k1,1) = (j1-1)*l/2 - (m-1)*l/4
y(k1,1) = (i1-1)*l/2 - (m-1)*l/4
end do
end do
x(:,1) = x(:,1)/(m-1)
y(:,1) = y(:,1)/(m-1)
! initialize
xtemp(:,1) = x(:,1)
ytemp(:,1) = y(:,1)
call random_number(r)
u(:,1) = s0*cos(r*2*pi-pi)
v(:,1) = s0*sin(r*2*pi-pi)
psi(1) = sqrt(sum(u(:,1))**2+sum(v(:,1)**2))/dble(m)/dble(m)/s0
do i2 = 1,nt
do j2 = 1,m*m
usum = 0
vsum = 0
count = 0
!$OMP parallel do private(k2), reduction(+:usum,vsum,count)
do k2 = 1,m*m
if ((xtemp(k2,i2)-xtemp(j2,i2))**2+(ytemp(k2,i2)-ytemp(j2,i2))**2<=d**2) then
usum = usum+u(k2,i2)
vsum = vsum+v(k2,i2)
count = count+1
end if
end do
!$OMP end parallel do
umean = usum/dble(count)
vmean = vsum/dble(count)
u(j2,i2+1) = s0*cos(atan(vmean/umean)+a*(r(j2)*2*pi-pi))
v(j2,i2+1) = s0*sin(atan(vmean/umean)+a*(r(j2)*2*pi-pi))
xtemp(j2,i2+1) = xtemp(j2,i2)+u(j2,i2+1)
ytemp(j2,i2+1) = ytemp(j2,i2)+v(j2,i2+1)
! boundary conditions
if (xtemp(j2,i2+1)>l) then
xtemp(j2,i2+1) = xtemp(j2,i2+1)-2*l
else
if (xtemp(j2,i2+1)<-l) then
xtemp(j2,i2+1) = xtemp(j2,i2+1)+2*l
end if
end if
if (ytemp(j2,i2+1)>l) then
ytemp(j2,i2+1) = ytemp(j2,i2+1)-2*l
else
if (ytemp(j2,i2+1)<-l) then
ytemp(j2,i2+1) = ytemp(j2,i2+1)+2*l
end if
end if
end do
psi(i2+1) = sqrt(sum(u(:,i2+1))**2+sum(v(:,i2+1))**2)/dble(m)/dble(m)/s0
end do
x(:,1:nt+1) = xtemp(:,1:nt+1)
y(:,1:nt+1) = ytemp(:,1:nt+1)
end subroutine simulate_omp
You can time it and compare it with the outer loop parallelised using private(j2,k2,umean,vmean,usum,vsum,count), shared(u,v,xtemp,ytemp). Make sure to have OMP_NESTED set to true for the latter tests.
my code below uses the secant method to find the root of an analytic function. The analytic function, f must be specified in the function part of my code. The code below works well and has no compilation errors. However, for the problem I want to solve I do not know the analytic function f.
Instead I calculate the function numerically, and its stored as an array. I want now apply my code to find the roots of this function. So how can I modify my code such that the input is not an analytic function, instead just an array which I have already calculated?
My working code is below, I assume I just need to modify the last part where I call the function f, I just am unsure how to go about doing this. Thanks!
program main
implicit none
real :: a = 1.0, b = -1.0
integer :: m = 8
interface
function f(x)
real, intent(in) :: x
end function
end interface
call secant(f,a,b,m)
end program main
subroutine secant(f,a,b,m)
implicit none
real, intent(in out) :: a,b
integer, intent(in) :: m
real :: fa, fb, temp
integer :: n
interface
function f(x)
real, intent(in) :: x
end function f
end interface
fa = f(a)
fb = f(b)
if (abs(fa) > abs(fb)) then
temp = a
a = b
b = temp
temp = fa
fa = fb
fb = temp
end if
print *," n x(n) f(x(n))"
print *," 0 ", a, fa
print *," 1 ", b, fb
do n = 2,m
if (abs(fa) > abs(fb)) then
temp = a
a = b
b = temp
temp = fa
fa = fb
fb = temp
end if
temp = (b - a)/(fb - fa)
b = a
fb = fa
a = a - fa*temp
fa = f(a)
print *,n,a,fa
end do
end subroutine secant
real function f(x)
implicit none
real, intent(in) :: x
f = x**5 + x**3 + 3.0 !analytic form of a function, I don't actually have this though, I just have the function stored as an array
end function f
What I wanted to say in my comments are something as below.
You can modify your secant subroutine to take an object of an abstract class (FAZ) which is guaranteed to have a function f. For example, as following.
solver.f90
!*****************************************************************
MODULE solver
!*****************************************************************
IMPLICIT NONE
PRIVATE
PUBLIC FAZ
PUBLIC secant
TYPE, ABSTRACT :: FAZ
CONTAINS
PROCEDURE(f), deferred, pass :: f
END TYPE FAZ
ABSTRACT INTERFACE
FUNCTION f(this, x)
IMPORT :: FAZ
REAL :: f
CLASS(FAZ), INTENT(IN) :: this
REAL, INTENT(IN) :: x
END FUNCTION f
END INTERFACE
!=====================================================================
CONTAINS
!=====================================================================
subroutine secant(oFAZ,a,b,m)
CLASS(FAZ) :: oFAZ
real, intent(in out) :: a,b
integer, intent(in) :: m
real :: fa, fb, temp
integer :: n
fa = oFAZ%f(a)
fb = oFAZ%f(b)
if (abs(fa) > abs(fb)) then
temp = a
a = b
b = temp
temp = fa
fa = fb
fb = temp
end if
print *," n x(n) f(x(n))"
print *," 0 ", a, fa
print *," 1 ", b, fb
do n = 2,m
if (abs(fa) > abs(fb)) then
temp = a
a = b
b = temp
temp = fa
fa = fb
fb = temp
end if
temp = (b - a)/(fb - fa)
b = a
fb = fa
a = a - fa*temp
fa = oFAZ%f(a)
print *,n,a,fa
end do
end subroutine secant
END MODULE solver
You can then implement the behavior of the function f in whatever way you like by extending the abstract class FAZ to a concrete class MyFAZ. For example, I wrote it as following.
myfaz.f90
!*******************************************************************
MODULE my_concrete_faz
!*******************************************************************
USE solver, ONLY : FAZ
IMPLICIT NONE
PRIVATE
PUBLIC MyFAZ
PUBLIC MyFAZ_constructor
TYPE, EXTENDS(FAZ) :: MyFAZ
PRIVATE
REAL, DIMENSION(:), ALLOCATABLE :: xdata, fdata
CONTAINS
PROCEDURE :: destructor
PROCEDURE :: f
END TYPE MyFAZ
! ================================================================
CONTAINS
! ================================================================
! ****************************************************************
FUNCTION MyFAZ_constructor(xdata_arg, fdata_arg) RESULT(oMyFAZ)
! ****************************************************************
TYPE(MyFAZ) :: oMyFAZ
REAL, DIMENSION(:), INTENT(IN) :: xdata_arg, fdata_arg
INTEGER :: ndata, jj
ndata = size(xdata_arg)
if (size(fdata_arg) /= ndata) then
stop 'MyFAZ_constructor: array size mismatch .. ndata'
end if
do jj=1,ndata-1
if (xdata_arg(jj)>xdata_arg(jj+1)) then
stop 'MyFAZ_constructor: expecting a sorted xdata. I am lazy.'
end if
end do
allocate(oMyFAZ%xdata(ndata))
allocate(oMyFAZ%fdata(ndata))
oMyFAZ%xdata = xdata_arg
oMyFAZ%fdata = fdata_arg
END FUNCTION MyFAZ_constructor
! ****************************************************************
SUBROUTINE destructor(this)
! ****************************************************************
CLASS(MyFAZ), INTENT(INOUT) :: this
deallocate(this%xdata)
deallocate(this%fdata)
END SUBROUTINE destructor
! ****************************************************************
FUNCTION f(this, x)
! ****************************************************************
! evaluates the function.
! Linear interpolation is used here, but this will not make sense
! in actual application. Everything is written in a very inefficient way.
REAL :: f
CLASS(MyFAZ), INTENT(IN) :: this
REAL, INTENT(IN) :: x
!
INTEGER :: jj
REAL :: rr
do jj=1, size(this%xdata)-1
if (this%xdata(jj)<=x .and. x<=this%xdata(jj+1)) then
exit
end if
end do
rr = (this%fdata(jj+1) - this%fdata(jj))/(this%xdata(jj+1) - this%xdata(jj))
f = rr*(x - this%xdata(jj)) + this%fdata(jj)
END FUNCTION f
END MODULE my_concrete_faz
I used the linear interpolation, just for demonstration. Actually, if f(x) = r x + s, then you know the solution without using the secant method.
You will have your own appropriate method to evaluate f(x) between data points.
You can use the above two modules as following.
main.f90
PROGRAM demo
USE solver, ONLY : secant
USE my_concrete_faz, ONLY : MyFAZ, MyFAZ_constructor
IMPLICIT NONE
REAL, DIMENSION(:), ALLOCATABLE :: xdata, fdata
INTEGER :: ndata
INTEGER :: niter_max
REAL :: xa, xb
TYPE(MyFAZ) :: oMyFAZ
niter_max = 10
xa = -2.0
xb = 3.0
! prepare data
ndata = 4
allocate(xdata(ndata))
allocate(fdata(ndata))
xdata(1) = -3.0
xdata(2) = -1.1
xdata(3) = 1.2
xdata(4) = 3.8
fdata(1) = -1.5
fdata(2) = -0.9
fdata(3) = 0.1
fdata(4) = 0.8
! prepare the function
oMyFAZ = MyFAZ_constructor(xdata, fdata)
deallocate(xdata)
deallocate(fdata)
! solve
call secant(oMyFAZ,xa,xb,niter_max)
write(*,*) '**************'
write(*,*) 'normal end'
write(*,*) '**************'
END PROGRAM demo
I compiled, built, and got output as following.
$ ifort -c solver.f90
$ ifort -c myfaz.f90
$ ifort -c main.f90
$ ifort -o demo *.o
$ ./demo
n x(n) f(x(n))
0 3.000000 0.5846154
1 -2.000000 -1.184211
2 1.347448 0.1396975
3 0.8285716 -6.1490655E-02
4 0.9871597 7.4606538E-03
5 0.9700001 0.0000000E+00
6 0.9700001 0.0000000E+00
7 NaN NaN
8 NaN NaN
9 NaN NaN
10 NaN NaN
**************
normal end
**************
$
The NaNs are there because your secant subroutine reached to the solution before the maximum iteration, but had no way to exit in the middle of the loop.
Here is a plot of the data.
I want to allocate memory for a matrix filled with double elements with Fortran 90, below is the corresponding C code:
int dim = 1024;
double *M = (double *)malloc(dim*dim*sizeof(double));
I wrote the code below but I could not access M(i) with i>=100:
program matrix
INTEGER :: i,d
CHARACTER(len=32) :: arg
REAL*8 M(*)
POINTER(ptr_M, M)
d=0
if(iargc() == 1) then
call getarg(1, arg)
read(arg, '(I10)') d
end if
print '("Dimension=", i6)', d
!allocate and init matrix
ptr_M = malloc(d*d*8)
do i=1,d*d
M(i) = i
end do
print '("M(i)=", f7.4)', M(100)
call free(ptr_M)
end program matrix
what's wrong?
Thanks to all, here is my final solution:
program matrix
IMPLICIT NONE
REAL, ALLOCATABLE :: M(:,:)
INTEGER :: i, j, d
CHARACTER(len=32) :: arg
!specify dimension with programm parameter
if(iargc() == 1) then
call getarg(1, arg)
read(arg, '(I10)') d
end if
!create and init matrix
ALLOCATE (M(d, d))
do i=1,d
do j=1,d
M(i, j) = (i - 1)*d+j
write (*,*) "M(",i,",",j,")=",M(i, j)
end do
end do
DEALLOCATE (M)
end program matrix
Using an ALLOCATABLE array, you can allocate a matrix with 100 rows and 200 columns as follows:
program xalloc
real, allocatable :: x(:,:)
allocate(x(100,200))
end program xalloc