Quarkus Cache API Response from Pub Sub - caching

I want to put some data in the cache in quarkus for at least for 30 min, the data which is subscribe from the pubsub. what method i need to apply and how do i know that data is really store for that particular time which i mention?
I have try to implement this by reading the documentation but that doesn't help.

Related

mapdb as a request scoped globally available state store?

has anyone used mapdb as a state store in spring boot for a request lifecycle ?
I mean set things like "isDebug", etc in mapdb for the particular request and then clear it out at the end of the request ?
mapdb sounds very much like how Redux, etc is used in React, so im trying to leverage similar patterns.
if you have done so, how do you manage the flushing of data at the end of a request, etc ?
how do you manage the flushing of data at the end of a request
The documentation of MapDb is rather sparse, but at a first glance DB.close() seems to close the current transaction and write data to files, if it is actually backed by a file, which I guess you mean by "flushing".
Of course this begs the question why you would want to perma
I'd assume it destroys an in memory database
Note: Just as M. Deinum I don't really see what you expect to gain from using mapdb.

Invoking 1 AWS Lambda with API Gateway sequentially

I know there's a question with the same title but my question is a little different: I got a Lambda API - saveInputAPI() to save the value into a specified field. Users can invoke this API with different parameter, for example:
saveInput({"adressType",1}); //adressType is a DB field.
or
saveInput({"name","test"}) //name is a DB field.
And of course, this hosts on AWS so I'm also using API Gateway as well. But the problem is sometimes, an error like this happened:
As you can see. API No. 19 was invoked first but ended up finishing later
(10:10:16:828) -> (10:10:18:060)
While API No.18 was invoked later but finished sooner...
(10:10:17:611) -> (10:10:17:861)
This leads to a lot of problems in my project. And sometimes, the delay between 2 API was up to 10 seconds. The front project acts independently so users don't know what happens behind. They think they have set addressType to 1 but in reality, the addressType is still 2. Since this project is large and I cannot change this kind of [using only 1 API to update DB value] design. Is there any way for me to fix this problem ?? Really appreciate any idea. Thanks
If updates to Database can't be skipped if last updated timestamp is more recent than the source event timestamp, we need to decouple Api Gateway and Lambda.
Api Gateway writes to SQS FIFO Queue.
Lambda to consume SQS and process the request.
This will ensure older event is processed first.
Amazon Lambda is asynchronous by design. That means that trying to make it synchronous and predictable is kind of waste.
If your concern is avoiding "old" data (in a sense of scheduling) overwrite "fresh" data, then you might consider timestamping each data and then applying constraints like "if you want to overwrite target data, then your source timestamp have to be in the future compared to timestamp of the targeted data"

When to use Redis and when to use DataLoader in a GraphQL server setup

I've been working on a GraphQL server for a while now and although I understand most of the aspects, I cannot seem to get a grasp on caching.
When it comes to caching, I see both DataLoader mentioned as well as Redis but it's not clear to me when I should use what and how I should use them.
I take it that DataLoader is used more on a field level to counter the n+1 problem? And I guess Redis is on a higher level then?
If anyone could shed some light on this, I would be most grateful.
Thank you.
DataLoader is primarily a means of batching requests to some data source. However, it does optionally utilize caching on a per request basis. This means, while executing the same GraphQL query, you only ever fetch a particular entity once. For example, we can call load(1) and load(2) concurrently and these will be batched into a single request to get two entities matching those ids. If another field calls load(1) later on while executing the same request, then that call will simply return the entity with ID 1 we fetched previously without making another request to our data source.
DataLoader's cache is specific to an individual request. Even if two requests are processed at the same time, they will not share a cache. DataLoader's cache does not have an expiration -- and it has no need to since the cache will be deleted once the request completes.
Redis is a key-value store that's used for caching, queues, PubSub and more. We can use it to provide response caching, which would let us effectively bypass the resolver for one or more fields and use the cached value instead (until it expires or is invalidated). We can use it as a cache layer between GraphQL and the database, API or other data source -- for example, this is what RESTDataSource does. We can use it as part of a PubSub implementation when implementing subscriptions.
DataLoader is a small library used to tackle a particular problem, namely generating too many requests to a data source. The alternative to using DataLoader is to fetch everything you need (based on the requested fields) at the root level and then letting the default resolver logic handle the rest. Redis is a key-value store that has a number of uses. Whether you need one or the other, or both, depends on your particular business case.

Why do GraphQL Subscriptions use an AsyncIterator?

AsyncIterator requires pulling data using .next(). But with websockets I generally want to push data when events occur. Only thing I can think of is that by using pull-based they can rate-limit.
So what is calling .next()? Is it a timer, or does it listen to a publish message, queue that, then call .next() until it consumes all the queue?
Is this suitable for real-time data, like GPS positions on a map?
Looked here and still could not figure it out: https://github.com/facebook/graphql/blob/master/rfcs/Subscriptions.md
GraphQL Subscriptions repo from Apollo: https://github.com/apollographql/graphql-subscriptions
AsyncIterator iterate through an EventStream, then each event is resolved, sometimes with filter and/or with a payload manipulation.
Payload manipulation can call an another async database request, or resolve other GraphQL Types, which is time consuming.
So GraphQL use a pull-based system to rate-limit resolves eventStream. If you don't use withFilter neither resolves, you won't have delay on Event except with a lot of user.
GraphQL is suitable for low latency data.
Source: https://github.com/graphql/graphql-js/blob/master/src/subscription/subscribe.js#L44

Java8 Stream or Reactive / Observer for Database Requests

I'm rethinking our Spring MVC application behavior, whether it's better to pull (Java8 Stream) data from the database or let the database push (Reactive / Observable) it's data and use backpressure to control the amount.
Current situation:
User requests the 30 most recent articles
Service does a database query and puts the 30 results into a List
Jackson iterates over the List and generates the JSON response
Why switch the implementation?
It's quite memory consuming, because we keep those 30 objects in memory all the time. That's not needed, because the application processes one object at a time. Though the application should be able to retrieve one object, process it, throw it away, and get the next one.
Java8 Streams? (pull)
With java.util.Stream this is quite easy: The Service creates a Stream, which uses a database cursor behind the scenes. And each time Jackson has written the JSON String for one element of the Stream, it will ask for the next one, which then triggers the database cursor to return the next entry.
RxJava / Reactive / Observable? (push)
Here we have the opposite scenario: The database has to push entry by entry and Jackson has to create the JSON String for each element until the onComplete method has been called.
i.e. the Controller tells the Service: give me an Observable<Article>. Then Jackson can ask for as many database entries as it can process.
Differences and concern:
With Streams there's always some delay between asking for next database entry and retrieving / processing it. This could slow down the JSON response time if the network connection is slow or there is a huge amount of database requests that have to be made to fulfill the response.
Using RxJava there should be always data available to process. And if it's too much, we can use backpressure to slow down the data transfer from database to our application. In the worst case scenario the buffer/queue will contain all requested database entries. Then the memory consumption will be equal to our current solution using a List.
Why am I asking / What am I asking for?
What did I miss? Are there any other pros / cons?
Why did (especially) the Spring Data Team extend their API to support Stream responses from the database, if there's always a (short) delay between each database request/response? This could sum up to some noticeable delay for a huge amount of requested entries.
Is it recommended to go for RxJava (or some other reactive implementation) for this scenario? Or did I miss any drawbacks?
You seem to be talking about the fetch size for an underlying database engine.
If you reduce it to one (fetching and processing one row at a time), yes you will save some space during the request time...
But it usually makes sense to have a reasonable chunk size.
If it is too small you will have a lot of expensive network roundtrips. If the chunk size is too large, you are risking to run out of memory or introduce too much of a latency per fetch. So it is a compromise, and the right chunk/fetch size depends on your specific use case.
Regarding reactive approach or not, I believe it is not relevant. Like with RxJava and say Cassandra, one can create an Observable from an asynchronous result set, and it is up to the query (configuration) how many items should be fetched and pushed at a time.

Resources