How to fix "invalid integration variable or limit(s) in Null"? - parallel-processing

I'm trying to make a table of elements for a double numerical integraql for the function "N[CurlyPhi]0"
G1[r1_, r_, L_, \[CurlyPhi]0_] :=
2 Sqrt[r^2 + r1^2 - 2 r r1 Cos[\[CurlyPhi]0]] -
2 Sqrt[r^2 + r1^2 - 2 r r1 Cos[\[CurlyPhi]0] + L^2] -
L Log[1 + (
2 L (L - Sqrt[r^2 + r1^2 - 2 r r1 Cos[\[CurlyPhi]0] + L^2]))/(
r^2 + r1^2 - 2 r r1 Cos[\[CurlyPhi]0])]
G2[r1_, r_, L_] :=
2 r r1 (-Sqrt[L^2 + (r - r1)^2] + Sqrt[(r - r1)^2] +
L ArcTanh[L/Sqrt[L^2 + (r - r1)^2]])
and
a3 = 8000;
b3 = 15000;
N\[CurlyPhi]0[a0_, b0_, \[CurlyPhi]0_, L_] := (
1/(\[Pi] (\[CurlyPhi]0 (b0^2 - a0^2) L) ))
NIntegrate[
G2[r1, r, L] - G1[r1, r, L, \[CurlyPhi]0], {r, a0, b0}, {r1, a0, r,
b0}, MinRecursion -> 9, MaxRecursion -> 40,
Method -> {"GlobalAdaptive",
"MaxErrorIncreases" ->
100000}]
I tried to make the table this way (I have use this same code before for another function)
N\[CurlyPhi]0vsLat\[CurlyPhi]0Dat =
ParallelTable[{L, N\[CurlyPhi]0[a3, b3, (10 \[Pi])/180, L 10^3],
N\[CurlyPhi]0[a3, b3, (30 \[Pi])/180, L 10^3],
N\[CurlyPhi]0[a3, b3, (60 \[Pi])/180, L 10^3],
N\[CurlyPhi]0[a3, b3, (90 \[Pi])/180, L 10^3],
N\[CurlyPhi]0[a3, b3, (120 \[Pi])/180, L 10^3],
N\[CurlyPhi]0[a3, b3, (150 \[Pi])/180, L 10^3],
N\[CurlyPhi]0[a3, b3, \[Pi], L 10^3],
N\[CurlyPhi]0[a3, b3, (210 \[Pi])/180, L 10^3],
N\[CurlyPhi]0[a3, b3, (240 \[Pi])/180, L 10^3]}, {L, 1, 100, 2}]
But I get this error message and Idk how to fix this so I can generate the table :
NIntegrate:The integrand (...) has evaluated to Overflow, Indeterminate, or Infinity for all
sampling points in the region with boundaries(...)

Related

Why Do i receive "Singleton variable" warning and incorrect result?

i'm writing a simple function in prolog (beginer). Function calculates a specific type of quadratic equation (but this is not important, calculations are correct).
liniowa(A, B, R, W) :-
Delta is 4*A*A*R - 4*B*B + 4*R,
( Delta < 0
-> false
; ( Delta == 0
-> X is -B/(2*A),
Y is A*X + B,
W = punkt(X, Y)
; X1 is (-B + sqrt(Delta)) / (2*A),
Y1 is A*X1 + B,
X2 is (-B - sqrt(Delta)) / (2*A),
Y2 is A*X2 + B,
writeln(X1), writeln(Y1), writeln(X2), writeln(Y2),
W = punkt(X1, Y1) ; W = punkt(X2, Y2)
)
).
When i run this function, i receive warnings:
Singleton variable in branch: X2
Singleton variable in branch: Y2
In the result i receive strange things. In writeln(X2), writeln(Y2) everything is ok, but then there is sth strange in punkt(X2, Y2):
1.4142135623730951
1.4142135623730951
-1.4142135623730951
-1.4142135623730951
W = punkt(1.4142135623730951, 1.4142135623730951)
W = punkt(_1344, _1346)
What's happening? How should I make it?
The syntax of ->/2 is horrendous at the best of times. That no official better syntax has been developed in 30 years is a sad statement, but of what? I won't say anything more about this.
It is best to separate out the program parts into separate predicates.
(A further refinement could be to separate out the case "Delta == 0" into a dedicated delta_positive(A,B,W), thus avoiding having to make a decision on delta_positive/4 and thus cutting and guarding.
liniowa(A, B, R, W) :-
Delta is 4*A*A*R - 4*B*B + 4*R,
( Delta < 0 -> false ; delta_positive(Delta,A,B,W) ).
delta_positive(0,A,B,W) :-
!, % commit to this clause
X is -B/(2*A),
Y is A*X + B,
W = punkt(X,Y).
delta_positive(Delta,A,B,W) :-
Delta \== 0, % superfluous, but makes things clear
!, % commit is also superfluous
X1 is (-B + sqrt(Delta)) / (2*A),
Y1 is A*X1 + B,
X2 is (-B - sqrt(Delta)) / (2*A),
Y2 is A*X2 + B,
format("X1=~q, Y1=~q, Y2=~q, Y2=~q\n",[X1,Y1,X2,Y2]),
(W = punkt(X1, Y1) ; W = punkt(X2, Y2)).
This immediately shows that parantheses are missing around the expression:
(W = punkt(X1, Y1) ; W = punkt(X2, Y2)).
I tried solving it:-
liniowa(A, B, R, W) :-
Delta is 4*A*A*R - 4*B*B + 4*R,
( Delta < 0
-> false
; ( Delta == 0
-> X is -B/(2*A),
Y is A*X + B,
W = punkt(X, Y)
; X1 is (-B + sqrt(Delta)) / (2*A),
Y1 is A*X1 + B,
X2 is (-B - sqrt(Delta)) / (2*A),
Y2 is A*X2 + B,
writeln(X1), writeln(Y1), writeln(X2), writeln(Y2),
W = punkt(X1, Y1) ); X2 is (-B - sqrt(Delta)) / (2*A),
Y2 is A*X2 + B, W = punkt(X2, Y2)
).
?-liniowa(2, 3, 4, W).
0.9083123951776999
4.8166247903554
-2.4083123951777
-1.8166247903553998
W = punkt(0.9083123951776999, 4.8166247903554)
W = punkt(-2.4083123951777, -1.8166247903553998)
I believe that in your code the calculation is being done in the previous step, that's why it is unable to pick it in the last case.

Error in Eiffel implementation of Burnikel and Ziegler algorithm 2

I need another set of eyes to tell me what is wrong with my Eiffel implementation of Burnikel and Ziegler's division, specifically "Algorithm 2 - 3n/2n". The Eiffel feature is shown below. The type "like Current" is an ARRAYED_LIST [NATURAL_8]. In other words, the implementation uses digits (i.e. limbs) containing 8-bit values, so numbers are in base-256. A manual trace of a failing call follows. (Sorry the arguments are so large, but I cannot reproduce the error with shorter values.) Execution follows step 3b in this case.
Here's the problem. The algorithm seems to be fine to Step 5, where the remainder "r" ends up with more digits then the divisor. I believe the error is in step 3b, perhaps with the call to feature `ones' which is "supposed" to supply a value that is "Beta^n - 1". (Maybe I do not understand B&Z's "Beta^n" notation.
Here is the Eiffel code:
three_by_two_divide (a, a3, b: like Current): TUPLE [quot, rem: like Current]
-- Called by `two_by_one_divide'. It has similar structure as
-- `div_three_halves_by_two_halfs', but the arguments to this
-- function have type {JJ_BIG_NATURAL} instead of like `digit'.
-- See Burnikel & Zieler, "Fast Recursive Division", pp 4-8,
-- Algorithm 2.
require
n_not_odd: b.count >= div_limit and b.count \\ 2 = 0
b_has_2n_digits: b.count = a3.count * 2
a_has_2n_digits: a.count = a3.count * 2
local
n: INTEGER
a1, a2: like Current
b1, b2: like Current
tup: TUPLE [quot, rem: like Current]
q, q1, q2, r, r1: like Current
c, d: like Current
do
n := b.count // 2
-- 1) Split `a'
a1 := new_sub_number (n + 1, a.count, a)
a2 := new_sub_number (1, n.max (1), a)
-- 2) Split `b'.
b1 := new_sub_number (n + 1, b.count, b)
b2 := new_sub_number (1, n.max (1), b)
-- 3) Distinguish cases.
if a1 < b1 then
-- 3a) compute Q = floor ([A1,A2] / B1 with remainder.
if b1.count < div_limit then
tup := school_divide (a, b1)
else
tup := two_by_one_divide (a, b1)
end
q := tup.quot
r1 := tup.rem
else
-- 3b) Q = beta^n - 1 and ...
q := ones (n)
-- ... R1 = [A1,A2] - [B1,0] + [0,B1] = [A1,A2] - QB1.
r1 := a + b1
if n > 1 then
b1.shift_left (n)
else
b1.bit_shift_left (zero_digit.bit_count // 2)
end
r1.subtract (b1)
end
-- 4) D = Q * B2
d := q * b2
-- 5) R1 * B^n + A3 - D. (The paper says "a4".)
r1.shift_left (n)
r := r1 + a3 - d
-- 6) As long as R < 0, repeat
from
until not r.is_negative
loop
r := r + b
q.decrement
end
check
remainder_small_enough: r.count <= b.count
-- because remainder must be less than divisor.
end
Result := [q, r]
ensure
-- n_digit_remainder: Result.rem.count = b.count // 2
quotient_has_correct_count: Result.quot.count <= b.count // 2
end
In the trace, the arrow points to a line I believe is bad, but I don't know what to do with it. Here is the trace:
three_by_two_divide (a = [227,26,41,95,169,93,135,110],
a3 = [92,164,19,39],
b = [161,167,158,41,164,0,0,0])
n := b.count // 2 = 4
-- 1) Split `a'.
a1 := new_sub_number (n + 1, a.count, a) = [227,26,41,95]
a2 := new_sub_number (1, n.max (1), a) = [169,93,135,110]
-- 2) Split `b'.
b1 := new_sub_number (n + 1, b.count, b) = [161,167,158,41]
b2 := new_sub_number (1, n.max (1), b) = [164,0,0,0]
-- 3b) Q = beta^n -1 and ...
--> q := ones (4) = [255,255,255,255] <-- Is this the error?
-- ... R1 = [A1,A2] - [B1,0] + [0,B1].
r1 := a + b1 = [227,26,41,96,75,5,37,151]
b1.shift_left (n) = [161,167,158,41,0,0,0,0]
r1.subtract (b1) = [65,114,139,55,75,5,37,151]
d := q * b2 = [163,255,255,255,92,0,0,0]
r1.shift_left (n) = [227,25,135,184,172,220,37,151,0,0,0,0] -- too big!
r := r1 + a3 - d -= [227,25,135,184,8,220,37,152,0,164,19,39] -- too big!
I know this is long, but any help is appreciated.
I would suggest to check that r1 = [65,114,139,55,75,5,37,151] is still the same before doing r1.shift_left (n). There are two options:
d := q * b2 affects r1 while it should not. Most probably there is some aliasing, i.e. r1 is aliased with some other variable that is updated and this aliasing should be removed.
r1 is still the same after d := q * b2. The issue is with shift_left that fails to (re)initialize some data or uses global data that it should not.

NMinimize is very slow

You are my last hope.
In my university there are no people able to answer my question.
I've got a function quite complex depending on 6 paramethers a0,a1,a2,b0,b1,b2 that minimize the delta of pression, volume liquid and volume vapor calculated by a rather new equation of state.
NMinimize is very slow and I could not do any considerations about this equation because timing is very high.
In the code there are some explanations and some problems concerning my code.
On my knees I pray you to help me.
I'm sorry, but after 4 months on construction of these equation I could not test it. And frustration is increasing day after day!
Clear["Global`*"];
data = {{100., 34.376, 0.036554, 23.782}, {105., 56.377, 0.037143,
15.116}, {110., 88.13, 0.037768, 10.038}, {115., 132.21, 0.038431,
6.9171}, {120., 191.43, 0.039138, 4.9183}, {125., 268.76,
0.039896, 3.5915}, {130., 367.32, 0.040714, 2.6825}, {135.,
490.35, 0.0416, 2.0424}, {140., 641.18, 0.042569, 1.5803}, {145.,
823.22, 0.043636, 1.2393}, {150., 1040., 0.044825,
0.98256}, {155., 1295., 0.046165, 0.78568}, {160., 1592.1,
0.047702, 0.63206}, {165., 1935.1, 0.0495, 0.51014}, {170.,
2328.3, 0.051667, 0.41163}, {175., 2776.5, 0.054394,
0.33038}, {180., 3285.2, 0.058078, 0.26139}, {185., 3861.7,
0.063825, 0.19945}, {190., 4518.6, 0.079902, 0.12816}};
tvector = data[[All, 1]];(*K*)
pvector =
data[[All, 2]];(*KPa*)
vlvector = data[[All, 3]];(*L/mol*)
vvvector =
data[[All, 4]];
(*L/mol.*)
r = 8.314472;
tc = 190.56;
avvicinamento = Length[tvector] - 3;
trexp = Take[tvector, avvicinamento]/tc;
vlexp = Take[vlvector, avvicinamento];
vvexp = Take[vvvector, avvicinamento];
zeri = Table[i*0., {i, avvicinamento}];
pexp = Take[pvector, avvicinamento];
(*Function for calculation of Fugacity of CSD Equation*)
(*Function for calculation of Fugacity of CSD Equation*)
fug[v_, p_, t_, a_, b_] :=
Module[{y, z, vbv, vb, f1, f2, f3, f4, f}, y = b/(4 v);
z = (p v)/(r t);
vbv = Log[(v + b)/v];
vb = v + b;
f1 = (4*y - 3*y^2)/(1 - y)^2;
f2 = (4*y - 2*y^2)/(1 - y)^3;
f3 = (2*vbv)/(r t*b)*a;
f4 = (vbv/b - 1/vb)/(r t)*a;
f = f1 + f2 - f3 + f4 - Log[z];
Exp[f]]
(*g Minimize the equality of fugacity*)
g[p_?NumericQ, t_?NumericQ, a0_?NumericQ, a1_?NumericQ, a2_?NumericQ,
b0_?NumericQ, b1_?NumericQ, b2_?NumericQ] := Module[{},
a = a0*Exp[a1*t + a2*t^2];
b = b0 + b1*t + b2*t^2;
csd = a/(r*t*(b + v)) - (-(b^3/(64*v^3)) + b^2/(16*v^2) +
b/(4*v) + 1)/(1 - b/(4*v))^3 + (p*v)/(r*t);
vol = NSolve[csd == 0 && v > 0, v, Reals];
sol = v /. vol;
(*If[Length[sol]==1,Interrupt[];Print["Sol==1"]];*)
vliquid = Min[sol];
vvapor = Max[sol];
fl = fug[vliquid, p, t, a, b];
fv = fug[vvapor, p, t, a, b];
(*Print[{t,p,vol,Abs[fl-fv]}];*)
Abs[fl - fv]];
(*This function minimize the pcalc-pexp and vcalc-vexp *)
hope[a0_?NumericQ, a1_?NumericQ, a2_?NumericQ, b0_?NumericQ,
b1_?NumericQ, b2_?NumericQ] :=
Module[{},
pp[a0, a1, a2, b0, b1, b2] :=
Table[FindRoot[{g[p, tvector[[i]], a0, a1, a2, b0, b1, b2]},
{p,pvector[[i]]}],{i,avvicinamento}];
pressioni1 = pp[a0, a1, a2, b0, b1, b2];
pcalc = p /. pressioni1;
differenza = ((pcalc - pexp)/pexp)^2;
If[MemberQ[differenza, 0.],
differenza = zeri + RandomReal[{100000, 500000}];(*
First problem:
As I've FindRoot that finds the solutions equal to the starting \
point, I don't want these kind of solutions and with this method - \
+RandomReal[{100000,500000}] -
a keep away this solutions.Is it right? *)
deltap = Total[differenza],
differenzanonzero = Select[differenza, # > 0 &];
csd1[a_, b_, p_, t_] :=
a/(r*t*(b + v)) - (-(b^3/(64*v^3)) + b^2/(16*v^2) + b/(4*v) +
1)/(1 - b/(4*v))^3 + (p*v)/(r*t);(*Funzione CSD*)
volumi =
Table[NSolve[csd1[a, b, pcalc[[i]], tvector[[i]]], v, Reals], {i,
avvicinamento}];
soluzioni = v /. volumi;
vvcalc = Table[Max[soluzioni[[i]]], {i, avvicinamento}];
vlcalc = Table[Min[soluzioni[[i]]], {i, avvicinamento}];
deltavl = Total[((vlexp - vlcalc)/vlcalc)^2];
deltavv = Total[((vvexp - vvcalc)/vvcalc)^2];
deltap = Total[differenza];
Print[a0, " ", b0, " ", delta];
delta = 0.1*deltavl + 0.1*deltavv + deltap]];
NMinimize[{hope[a0, a1, a2, b0, b1, b2],
500 < a0 < 700 && -0.01 < a1 < -1.0*10^-5 && -10^-5 < a2 < -10^-7 &&
0.0010 < b0 < 0.1 && -0.0010 < b1 < -1.0*10^-5 &&
10^-9 < b2 < 10^-7}, {a0, a1, a2, b0, b1, b2}]
Thanks in advance!
Mariano Pierantozzi
PhD Student in chemical Engineering

Efficient numerical calculation of 2d data sets

I'm trying to calculate the fourier transform of a gaussian beam. Later I want to ad some modifications to the following example code. With the required stepsize of 1e-6 the calculation with 8 kernel takes 1244s on my workstation. The most consuming part is obviously the generation of uaperture. Has anyone ideas to improve the performance? Why does mathematica not create a packed list from my expression, when I'm having both real and complex values in it?
uin[gx_, gy_, z_] := Module[{w0 = L1[[1]], z0 = L1[[3]], w, R, \[Zeta], k},
w = w0 Sqrt[1 + (z/z0)^2];
R = z (1 + (z0/z)^2);
\[Zeta] = ArcTan[z/z0];
k = 2*Pi/193*^-9;
Developer`ToPackedArray[
ParallelTable[
w0/w Exp[-(x^2 + y^2)/w^2] Exp[-I k/2/R (x^2 + y^2)/2] Exp[-I k z*0 +
I \[Zeta]*0], {x, gx}, {y, gy}]
]
]
AbsoluteTiming[
dx = 1*^-6;
gx = Range[-8*^-3, 8*^-3, dx];
gy = gx;
d = 15*^-3;
uaperture = uin[gx, gy, d];
ufft = dx*dx* Fourier[uaperture];
uout = RotateRight[
Abs[ufft]*dx^2, {Floor[Length[gx]/2], Floor[Length[gx]/2]}];
]
Thanks in advance,
Johannes
You can speed it up by first vectorizing it (uin2), then compiling it (uin3):
In[1]:= L1 = {0.1, 0.2, 0.3};
In[2]:= uin[gx_, gy_, z_] :=
Module[{w0 = L1[[1]], z0 = L1[[3]], w, R, \[Zeta], k},
w = w0 Sqrt[1 + (z/z0)^2];
R = z (1 + (z0/z)^2);
\[Zeta] = ArcTan[z/z0];
k = 2*Pi/193*^-9;
ParallelTable[
w0/w Exp[-(x^2 + y^2)/
w^2] Exp[-I k/2/R (x^2 + y^2)/2] Exp[-I k z*0 +
I \[Zeta]*0], {x, gx}, {y, gy}]
]
In[3]:= uin2[gx_, gy_, z_] :=
Module[{w0 = L1[[1]], z0 = L1[[3]], w, R, \[Zeta], k, x, y},
w = w0 Sqrt[1 + (z/z0)^2];
R = z (1 + (z0/z)^2);
\[Zeta] = ArcTan[z/z0];
k = 2*Pi/193*^-9;
{x, y} = Transpose[Outer[List, gx, gy], {3, 2, 1}];
w0/w Exp[-(x^2 + y^2)/
w^2] Exp[-I k/2/R (x^2 + y^2)/2] Exp[-I k z*0 + I \[Zeta]*0]
]
In[4]:= uin3 =
Compile[{{gx, _Real, 1}, {gy, _Real, 1}, z},
Module[{w0 = L1[[1]], z0 = L1[[3]], w, R, \[Zeta], k, x, y},
w = w0 Sqrt[1 + (z/z0)^2];
R = z (1 + (z0/z)^2);
\[Zeta] = ArcTan[z/z0];
k = 2*Pi/193*^-9;
{x, y} = Transpose[Outer[List, gx, gy], {3, 2, 1}];
w0/w Exp[-(x^2 + y^2)/
w^2] Exp[-I k/2/R (x^2 + y^2)/2] Exp[-I k z*0 + I \[Zeta]*0]
],
CompilationOptions -> {"InlineExternalDefinitions" -> True}
];
In[5]:= dx = 1*^-5;
gx = Range[-8*^-3, 8*^-3, dx];
gy = gx;
d = 15*^-3;
In[9]:= r1 = uin[gx, gy, d]; // AbsoluteTiming
Out[9]= {67.9448862, Null}
In[10]:= r2 = uin2[gx, gy, d]; // AbsoluteTiming
Out[10]= {28.3326206, Null}
In[11]:= r3 = uin3[gx, gy, d]; // AbsoluteTiming
Out[11]= {0.4190239, Null}
We got a ~160x speedup even though this is not running in parallel.
Results are the same:
In[12]:= r1 == r2
Out[12]= True
There's a tiny difference here due to numerical errors:
In[13]:= r2 == r3
Out[13]= False
In[14]:= Max#Abs[r2 - r3]
Out[14]= 5.63627*10^-14

1)a workaround for "NMaximize" error "function unbounded." but don't know why 2) more importantly, how to speed up this 3d region plot (see update2)

When I was trying to find the maximum value of f using NMaximize, mathematica gave me a error saying
NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.
However, if I scale f with a large number, say, 10^5, 10^10, even 10^100, NMaximize works well.
In the two images below, the blue one is f, and the red one is f/10^10.
Here come my questions:
Is scaling a general optimization trick?
Any other robust, general workarounds for the optimizations such
needle-shape functions?
Because the scaling barely changed the shape of the needle-shape of
f, as shown in the two images, how can scaling work here?
thanks :)
Update1: with f included
Clear["Global`*"]
d = 1/100;
mu0 = 4 Pi 10^-7;
kN = 97/100;
r = 0.0005;
Rr = 0.02;
eta = 1.3;
e = 3*10^8;
s0 = 3/100;
smax = 1/100; ks = smax/s0;
fre = 1; tend = 1; T = 1;
s = s0*ks*Sin[2*Pi*fre*t];
u = D[s, t];
umax = N#First[Maximize[u, t]];
(*i=1;xh=0.1;xRp=4.5`;xLc=8.071428571428573`;
i=1;xh=0.1;xRp=4.5;xLc=8.714285714285715;*)
i = 1; xh = 0.1; xRp = 5.5; xLc = 3.571428571428571`;
(*i=1;xh=0.1`;xRp=5.`;xLc=6.785714285714287`;*)
h = xh/100; Rp = xRp/100; Lc = xLc/100;
Afai = Pi ((Rp + h + d)^2 - (Rp + h)^2);
(*Pi (Rp-Hc)^2== Afai*)
Hc = Rp - Sqrt[Afai/Pi];
(*2Pi(Rp+h/2) L/2==Afai*)
L = (2 Afai)/(\[Pi] (h + 2 Rp));
B = (n mu0 i)/(2 h);
(*tx = -3632B+2065934/10 B^2-1784442/10 B^3+50233/10 B^4+230234/10 \
B^5;*)
tx = 54830.3266978739 (1 - E^(-3.14250266080741 B^2.03187556833859));
n = Floor[(kN Lc Hc)/(Pi r^2)] ;
A = Pi*(Rp^2 - Rr^2);
b = 2*Pi*(Rp + h/2);
(* -------------------------------------------------------- *)
Dp0 = 2*tx/h*L;
Q0 = 0;
Q1 = ((1 - 3 (L tx)/(Dp h) + 4 (L^3 tx^3)/(Dp^3 h^3)) Dp h^3)/(
12 eta L) b;
Q = Piecewise[{{Q1, Dp > Dp0}, {Q0, True}}];
Dp = Abs[dp[t]];
ode = u A - A/e ((s0^2 - s^2)/(2 s0 )) dp'[t] == Q*Sign[dp[t]];
sol = First[
NDSolve[{ode, dp[0] == 0}, dp, {t, 0, tend} ,
MaxSteps -> 10^4(*Infinity*), MaxStepFraction -> 1/30]];
Plot[dp''[t] A /. sol, {t, T/4, 3 T/4}, AspectRatio -> 1,
PlotRange -> All]
Plot[dp''[t] A /10^10 /. sol, {t, T/4, 3 T/4}, AspectRatio -> 1,
PlotRange -> All, PlotStyle -> Red]
f = dp''[t] A /. sol;
NMaximize[{f, T/4 <= t <= 3 T/4}, t]
NMaximize[{f/10^5, T/4 <= t <= 3 T/4}, t]
NMaximize[{f/10^5, T/4 <= t <= 3 T/4}, t]
NMaximize[{f/10^10, T/4 <= t <= 3 T/4}, t]
update2: Here comes my real purpose. Actually, I am trying to make the following 3D region plot. But I found it is very time consuming (more than 3 hours), any ideas to speed up this region plot?
Clear["Global`*"]
d = 1/100;
mu0 = 4 Pi 10^-7;
kN = 97/100;
r = 0.0005;
Rr = 0.02;
eta = 1.3;
e = 3*10^8;
s0 = 3/100;
smax = 1/100; ks = smax/s0;
f = 1; tend = 1/f; T = 1/f;
s = s0*ks*Sin[2*Pi*f*t];
u = D[s, t];
umax = N#First[Maximize[u, t]];
du[i_?NumericQ, xh_?NumericQ, xRp_?NumericQ, xLc_?NumericQ] :=
Module[{Afai, Hc, L, B, tx, n, A, b, Dp0, Q0, Q1, Q, Dp, ode, sol,
sF, uF, width, h, Rp, Lc},
h = xh/100; Rp = xRp/100; Lc = xLc/100;
Afai = Pi ((Rp + h + d)^2 - (Rp + h)^2);
Hc = Rp - Sqrt[Afai/Pi];
L = (2 Afai)/(\[Pi] (h + 2 Rp));
B = (n mu0 i)/(2 h);
tx = 54830.3266978739 (1 - E^(-3.14250266080741 B^2.03187556833859));
n = Floor[(kN Lc Hc)/(Pi r^2)] ;
A = Pi*(Rp^2 - Rr^2);
b = 2*Pi*(Rp + h/2);
Dp0 = 2*tx/h*L;
Q0 = 0;
Q1 = ((1 - 3 (L tx)/(Dp h) + 4 (L^3 tx^3)/(Dp^3 h^3)) Dp h^3)/(
12 eta L) b;
Q = Piecewise[{{Q1, Dp > Dp0}, {Q0, True}}];
Dp = Abs[dp[t]];
ode = u A - A/e ((s0^2 - s^2)/(2 s0 )) dp'[t] == Q*Sign[dp[t]];
sol = First[
NDSolve[{ode, dp[0] == 0}, dp, {t, 0, tend} , MaxSteps -> 10^4,
MaxStepFraction -> 1/30]];
sF = ParametricPlot[{s, dp[t] A /. sol}, {t, 0, tend},
AspectRatio -> 1];
uF = ParametricPlot[{u, dp[t] A /. sol}, {t, 0, tend},
AspectRatio -> 1];
tdu = NMaximize[{dp''[t] A /10^8 /. sol, T/4 <= t <= 3 T/4}, {t,
T/4, 3 T/4}, AccuracyGoal -> 6, PrecisionGoal -> 6];
width = Abs[u /. tdu[[2]]];
{uF, width, B}]
RegionPlot3D[
du[1, h, Rp, Lc][[2]] <= umax/6, {h, 0.1, 0.2}, {Rp, 3, 10}, {Lc, 1,
10}, LabelStyle -> Directive[18]]
NMaximize::cvdiv is issued if the optimum improved a couple of orders of magnitude during the optimization process, and the final result is "large" in an absolute sense. (To prevent the message in a case where we go from 10^-6 to 1, for example.)
So yes, scaling the objective function can have an effect on this.
Strictly speaking this message is a warning, and not an error. My experience is that if you see it, there's a good chance that your problem is unbounded for some reason. In any case, this warning is a hint that you might want to double check your system to see if that might be the case.

Resources