Time complexity for convex hull - algorithm

Going through a text book on Data structures and algorithms(Steven Skiena), I came across convex hull problem.
So, objective is to find convex hull for a given set of points.
Books says:
Once you have the points sorted by x-coordinate, the points can be inserted from left to
right into the hull. Since the right-most point is always on the boundary, we know that
it must appear in the hull. Adding this new right-most point may cause others to
deleted, but we can quickly identify these points because they lie inside the polygon
formed by adding the new point....
These points will be neighbors of the previous point we inserted, so they will be easy
to find and delete. The total time is linear after the sorting has been done.
I am not able to understand how is this a linear time solution after sorting is done?
Every time we add a new point, we need to check for all exiting points whether they are inside polygon or not, which goes as 1,2,3,4,5...n operations. Adding these number of operations gives O(N*N).
Am I missing something here?

Since you're constructing a polygon, you don't just have a set of points as your output, you also know which points are neighbours of which other points. There are two key things to note:
Each point can only be deleted from the hull once,
When you find a neighbour that you don't delete, you don't have to search further in that direction.
So each time you insert a point, you (possibly) remove some other points and you check at most two points that don't get removed. The total number of checks is therefore at most n for the points you delete, plus at most 2n for the neighbours you don't delete.
So you do O(n) convexity checks, and each check takes O(1) time since you only need to consider three points; hence, except for the initial sorting, the rest of the algorithm takes linear time.

Related

FInd furthest point in O(1) time

Consider a set S of n points in the plane such that the farthest pair is having distance at most 1. I would like to find the farthest point of a given query point q (not in S) in O(1) time. How do I pre-process the points in S to achieve the desired query time bound?
Can this be possible?
It is not possible stricto sensu. This is a point location problem in a planar straight line graph, which is known to require O(log(N)) query time.
Anyway, it can be addressed approximately by gridding.
Overlay a square grid over the furthest point Voronoi diagram, and for every cell note the regions it covers. Make sure that the number of covered regions is bounded. This can be approximately achieved by taking a grid pitch smaller than the distance of the two closest vertices in the diagram.
For a query pixel, finding the containing cell is done in constant time. Then finding the region among a bounded number takes constant time as well.
Assuming there is no relation between the points, there is no single operation that will give you the furthest point. So, the only way to do it is to compute it in advance, so you need a simple mapping between each point and the point furthest from it.

Effiecient algorithm for matching line segments without intersection

I wanted to know an efficient algorithm to match (partition into n/2 distinct pairs) n=2k points in general position in the plane in such way that segments joining the matched points do not cross. Any idea would help out immmensely.
Mr. SRKV there is a simpler way of doing it.
Sort all the points based on the x-coordinate.
Now pair the left most point with the next left most one.
Remove the two points that we just paired.
Continue from Step 2 till there are no points left.
In case two points have the same x-coordinate. The following is the tie breaking rule.
Join the point with the lower y-coordinate to the point with the 2nd lowest y-coordinate.
If there are an odd number of points with the same x-coordinate, then we join the lone remaining point (topmost y) with the next x-coordinate(if multiple then the lowest one).
Total complexity O(nlogn) to sort and O(n) to traverse so asymptotically it is O(nlogn).
Find the convex hull.
Working your way around the hull (let's say clockwise), take adjacent pairs of vertices and add them to your set of pairs. Delete each pair from the graph as you do so. If the hull contains an even number of points, then all of them will be deleted, otherwise 1 will be left over.
If the graph still contains points, goto 1.
If each hull contains an even number of points, then it's clear that every pair of line segments found by this algorithm either came from the same hull, or from different hulls -- and either way, they will not intersect. I'm convinced it will work even when some hulls have an odd number of points.

Remove points to maximize shortest nearest neighbor distance

If I have a set of N points in 2D space, defined by vectors X and Y of their locations. What is an efficient algorithm that will
Select a fixed number (M) points to remove so as to maximize the shortest nearest-neighbor distance among the remaining points.
Remove a minimum number of points so that the shortest nearest-neighbor distance among the remaining points is greater than a fixed distance (D).
Sorting by points by their shortest nearest neighbor distance and removing the points with the smallest values does not give the correct answer, as then you remove both points of close pairs, while you may only need to remove one of the points in those pairs.
For my case, I am usually dealing with 1,000-10,000 points, and I may remove 50-90% of points.
You shouldn't need to store (or compute) the entire distance matrix: a Delaunay triangulation should efficiently (O(n log n) worst case) give you the closest neighbors of your point set. You should also be able to update it efficiently as you delete points.
For most cases of close pairs, you should be able to check to see which of the pair would be farthest from its neighbors if the other is removed. This is not an exact solution; especially if you remove a large proportion of points, removing a locally optimum point may exclude the globally optimum solution. Also, you should be able to deal with clusters of 3 or more locally close points. However, if you are only removing a small proportion of points from a randomly distributed set, both these cases may be relatively rare.
There may or may not be a better way (i.e., an exact and efficient algorithm) to solve your problem, but the above suggestions should lead to an approximate and/or combinatorial approach which works best when the points that need deleting are sparsely distributed.
Noam
One method is to break your 2D space into N partitions. Within each partition, determine an average position for each X,Y. Then perform the nearest neighbor algorightm on the averaged points. Then repeat the nearest neighbor test on the full point set of the partitions that matched.
Here's the catch. The larger the partitions, the fewer points you will have but the less accurate. The smaller the partitions, it will be more accurate but with more points to process.
I can't think of anything other than a brute force approach. But you can probably shorten the data set you are looking at significantly before any analysis.
So, what I would do is. First work out the nearest neighbour distance for each point. Let's call that P_in. Then work out the maximum distance of each point to its M nearest neighbours, call it P_iM. If P_in is greater than P_iM for any point then it can be excluded from the analysis. Basically if you have one point that is a distance of 10 from any other point, and you have another point that is a distance of 9 from the nearest M points then you should remove the first point.
Depending on the level of clustering or how big M is, this might reduce your data set quite a bit.

polygon union without holes

Im looking for some fairly easy (I know polygon union is NOT an easy operation but maybe someone could point me in the right direction with a relativly easy one) algorithm on merging two intersecting polygons. Polygons could be concave without holes and also output polygon should not have holes in it. Polygons are represented in counter-clockwise manner. What I mean is presented on a picture. As you can see even if there is a hole in union of polygons I dont need it in the output. Input polygons are for sure without holes. I think without holes it should be easier to do but still I dont have an idea.
Remove all the vertices of the polygons which lie inside the other polygon: http://paulbourke.net/geometry/insidepoly/
Pick a starting point that is guaranteed to be in the union polygon (one of the extremes would work)
Trace through the polygon's edges in counter-clockwise fashion. These are points in your union. Trace until you hit an intersection (note that an edge may intersect with more than one edge of the other polygon).
Find the first intersection (if there are more than one). This is a point in your Union.
Go back to step 3 with the other polygon. The next point should be the point that makes the greatest angle with the previous edge.
You can proceed as below:
First, add to your set of points all the points of intersection of your polygons.
Then I would proceed like graham scan algorithm but with one more constraint.
Instead of selecting the point that makes the highest angle with the previous line (have a look at graham scan to see what I mean (*), chose the one with the highest angle that was part of one of the previous polygon.
You will get an envellope (not convex) that will describe your shape.
Note:
It's similar to finding the convex hull of your points.
For example graham scan algorithm will help you find the convex hull of the set of points in O (N*ln (N) where N is the number of points.
Look up for convex hull algorithms, and you can find some ideas.
Remarques:
(*)From wikipedia:
The first step in this algorithm is to find the point with the lowest
y-coordinate. If the lowest y-coordinate exists in more than one point
in the set, the point with the lowest x-coordinate out of the
candidates should be chosen. Call this point P. This step takes O(n),
where n is the number of points in question.
Next, the set of points must be sorted in increasing order of the
angle they and the point P make with the x-axis. Any general-purpose
sorting algorithm is appropriate for this, for example heapsort (which
is O(n log n)). In order to speed up the calculations, it is not
necessary to calculate the actual angle these points make with the
x-axis; instead, it suffices to calculate the cosine of this angle: it
is a monotonically decreasing function in the domain in question
(which is 0 to 180 degrees, due to the first step) and may be
calculated with simple arithmetic.
In the convex hull algorithm you chose the point of the angle that makes the largest angle with the previous side.
To "stick" with your previous polygon, just add the constraint that you must select a side that previously existed.
And you take off the constraint of having angle less than 180°
I don't have a full answer but I'm about to embark on a similar problem. I think there are two step which are fairly important. First would be to find a point on some polygon which lies on the outside edge. Second would be to make a list of bounding boxes for all the vertices and see which of these overlap. This means when you iterate through vertices, you don't have to do tests for all of them, only those which you know have a chance of intersecting (bounding box problems are lightweight).
Since you now have an outside point, you can now iterate through connected points until you detect an intersection. If you know which side is inside and which outside (you may need to do some work on the first vertex to know this), you know which way to go on the intersection. Then it's merely a matter of switching polygons.
This gets a little more interesting if you want to maintain that hole (which I do) in which case, I would probably make sure I had used up all my intersecting bounding boxes. You also didn't specify what should happen if your polygons don't intersect at all. But that's either going to be leave them alone (which could potentially be a problem if you're expecting one polygon out) or return an error.

Largest triangle from a set of points [duplicate]

This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
How to find largest triangle in convex hull aside from brute force search
I have a set of random points from which i want to find the largest triangle by area who's verticies are each on one of those points.
So far I have figured out that the largest triangle's verticies will only lie on the outside points of the cloud of points (or the convex hull) so i have programmed a function to do just that (using Graham scan in nlogn time).
However that's where I'm stuck. The only way I can figure out how to find the largest triangle from these points is to use brute force at n^3 time which is still acceptable in an average case as the convex hull algorithm usually kicks out the vast majority of points. However in a worst case scenario where points are on a circle, this method would fail miserably.
Dose anyone know an algorithm to do this more efficiently?
Note: I know that CGAL has this algorithm there but they do not go into any details on how its done. I don't want to use libraries, i want to learn this and program it myself (and also allow me to tweak it to exactly the way i want it to operate, just like the graham scan in which other implementations pick up collinear points that i don't want).
Don't know if this help, but if you choose two points from the convex hull and rotate all points of the hull so that the connecting line of the two points is parallel to the x-Axis, either the point with the maximum or the one with the minimum y-coordinate forms the triangle with the largest area together with the two points chosen first.
Of course once you have tested one point for all possible base lines, you can remove it from the list.
Here's a thought on how to get it down to O(n2 log n). I don't really know anything about computational geometry, so I'll mark it community wiki; please feel free to improve on this.
Preprocess the convex hull by finding for each point the range of slopes of lines through that point such that the set lies completely on one side of the line. Then invert this relationship: construct an interval tree for slopes with points in leaf nodes, such that when querying with a slope you find the points such that there is a tangent through those points.
If there are no sets of three or more collinear points on the convex hull, there are at most four points for each slope (two on each side), but in case of collinear points we can just ignore the intermediate points.
Now, iterate through all pairs of points (P,Q) on the convex hull. We want to find the point R such that triangle PQR has maximum area. Taking PQ as the base of the triangle, we want to maximize the height by finding R as far away from the line PQ as possible. The line through R parallel to PQ must be such that all points lie on one side of the line, so we can find a bounded number of candidates in time O(log n) using the preconstructed interval tree.
To improve this further in practice, do branch-and-bound in the set of pairs of points: find an upper bound for the height of any triangle (e.g. the maximum distance between two points), and discard any pair of points whose distance multiplied by this upper bound is less than the largest triangle found so far.
I think the rotating calipers method may apply here.
Off the top of my head, perhaps you could do something involving gridding/splitting the collection of points up into groups? Maybe... separating the points into three groups (not sure what the best way to do that in this case would be, though), doing something to discard those points in each group that are closer to the other two groups than other points in the same group, and then using the remaining points to find the largest triangle that can be made having one vertex in each group? This would actually make the case of all points being on a circle a lot simpler, because you'd just focus on the points that are near the center of the arcs contained within each group, as those would be the ones in each group furthest from the other two groups.
I'm not sure if this would give you the proper result for certain triangles/distributions of points, though. There may be situations where the resultant triangle isn't of optimal area, either because the grouping and/or the vertex choosing aren't/isn't optimal. Something like that.
Anyway, those are my thoughts on the problem. I hope I've at least been able to give you ideas for how to work on it.
How about dropping a point at a time from the convex hull? Starting with the convex hull, calculate the area of the triangle formed by each triple of adjacent points (p1p2p3, p2p3p4, etc.). Find the triangle with minimum area, then drop the middle of the three points that formed that triangle. (In other words, if the smallest area triangle is p3p4p5, drop P4.) Now you have a convex polygon with N-1 points. Repeat the same procedure until you are left with three points. This should take O(N^2) time.
I would not be at all surprised if there is some pathological case where this doesn't work, but I expect that it would work for the majority of cases. (In other words, I haven't proven this, and I have no source to cite.)

Resources