what is the better algorithm than A* in pair matching? - algorithm

I have 2 sets of datas.
PreData is size of 251.
PostData is size of 234.
And PreData is converted to PostData, but some are missing in converting process.
below pic shows distributions of each datasets. Orange color is PostData.
all datas does not have nametag, So I cannot findout which pre data is connected to which post data.
But converting process is pretty linear(not 100% linear, noise exist),
I guess, closer two points has higher chance to be a pair.
So, I made distance matrix like below.
Now the problem is it.
find smallest sum of 234 pairs in matrix and each axis only used by 1 time.(it is 234*251 so some y axis cannot be choiced)
First, I tried A* algorithm.
select all first row items as a new node.
and huristic is sum of smallest values of each row from remain(remove first row and their columns) matrix.
1. start
2. remove row and col
3. calc Huristic
sum of all each row's minimums.
it is impossibly optimistic huristic. So, huristic is admissible.
A*, it works well in 7 by 10, 10 by 10 test datas.
But it runs forever in real data.
234 * 251 is too big.
I guess huristic is too optimistic..... but.....
what can i do? please someone tell me better algorithm or ideas.

Related

Find smallest sum of values in matrix using row index and colum index once

So I want to find the smallest values in a matrix in the following way.
[[ 1000. 930. 940. 740.]
[ 1000. 1000. 990. 670.]
M1= [ 1000. 1000. 1000. 680.]
[ 1000. 1000. 1000. 1000.]]
The sum of 2 matrix values should be chosen in such a way that the indexes are used once 0,1,2,3. But also the sum of matrix values should be minimized.
So in this case the solution would be M1[2][3] and M1[0][1].
Incorrect would be M1[2][3] and M1[1][3], which hase a lower sum but is does not contain unique index numbers.
The solution should work for NxN matrices, N is even. So for 8x8 matrix, i want to find 4 elements. So that the index Numbers. 0,1,2,3,4,5,6,7 are uses once. So four matrix values.
Another constraint is that the matrix contains only values of intrest in the upper trangle matrix. So were the matrix elements are 1000, these elements can be ignored in finding the minimum sum.
I have tried to alter the Hungarian algorithm, but this was not successful.
Does anybody know of an algorithm that does what I want? Maybe a python package wich I can abuse
Or has a smart solution which would help, I have to do this matrix with about 200X200 elements max.
I will say a solution that is probably not the fastest but it may work.
You can build a graph this way:
the graph will contain (N×N+1) vertexes, which represent the indexes of the matrix and a new one, which will be the source
the source will be connected to all other vertexes with a distance equivalent to the value of the index each of them represents.
then you must connect each vertex (except the source) to every other vertex that is possible to go to (for example, M1[1][2] can go to M1[0][3] but not to M1[1][3]). The distance from any vertex to a vertex V will correspond to the value of V in the matrix.
after you build this graph, you should walk on it K steps (being K the number of possible matrix' indexes you will consider, for example, 2 in a 4x4 matrix like your example).
For each step you take, you store in a stack and in 2 hashes the last position you were (the first to store all rows already used, the second to store all columns already used) and you mark the vertex you get into.
Always you get into a vertex, you should check if is possible to stay in it by using the hashes (theoretically O(1) checking), and if is possible, you add that value to the current sum, otherwise you go to the previous position (stored in the stack) and remove the weight you added when you went into the current vertex.
You should also store a global variable and always you walk K steps, you check if the current sum is smaller than the global sum, and if it is, you change it.
After you walk all possible ways, the global sum will be your answer.
Hope this helps :)

Is it better to reduce the space complexity or the time complexity for a given program?

Grid Illumination: Given an NxN grid with an array of lamp coordinates. Each lamp provides illumination to every square on their x axis, every square on their y axis, and every square that lies in their diagonal (think of a Queen in chess). Given an array of query coordinates, determine whether that point is illuminated or not. The catch is when checking a query all lamps adjacent to, or on, that query get turned off. The ranges for the variables/arrays were about: 10^3 < N < 10^9, 10^3 < lamps < 10^9, 10^3 < queries < 10^9
It seems like I can get one but not both. I tried to get this down to logarithmic time but I can't seem to find a solution. I can reduce the space complexity but it's not that fast, exponential in fact. Where should I focus on instead, speed or space? Also, if you have any input as to how you would solve this problem please do comment.
Is it better for a car to go fast or go a long way on a little fuel? It depends on circumstances.
Here's a proposal.
First, note you can number all the diagonals that the inputs like on by using the first point as the "origin" for both nw-se and ne-sw. The diagonals through this point are both numbered zero. The nw-se diagonals increase per-pixel in e.g the northeast direction, and decreasing (negative) to the southwest. Similarly ne-sw are numbered increasing in the e.g. the northwest direction and decreasing (negative) to the southeast.
Given the origin, it's easy to write constant time functions that go from (x,y) coordinates to the respective diagonal numbers.
Now each set of lamp coordinates is naturally associated with 4 numbers: (x, y, nw-se diag #, sw-ne dag #). You don't need to store these explicitly. Rather you want 4 maps xMap, yMap, nwSeMap, and swNeMap such that, for example, xMap[x] produces the list of all lamp coordinates with x-coordinate x, nwSeMap[nwSeDiagonalNumber(x, y)] produces the list of all lamps on that diagonal and similarly for the other maps.
Given a query point, look up it's corresponding 4 lists. From these it's easy to deal with adjacent squares. If any list is longer than 3, removing adjacent squares can't make it empty, so the query point is lit. If it's only 3 or fewer, it's a constant time operation to see if they're adjacent.
This solution requires the input points to be represented in 4 lists. Since they need to be represented in one list, you can argue that this algorithm requires only a constant factor of space with respect to the input. (I.e. the same sort of cost as mergesort.)
Run time is expected constant per query point for 4 hash table lookups.
Without much trouble, this algorithm can be split so it can be map-reduced if the number of lampposts is huge.
But it may be sufficient and easiest to run it on one big machine. With a billion lamposts and careful data structure choices, it wouldn't be hard to implement with 24 bytes per lampost in an unboxed structures language like C. So a ~32Gb RAM machine ought to work just fine. Building the maps with multiple threads requires some synchronization, but that's done only once. The queries can be read-only: no synchronization required. A nice 10 core machine ought to do a billion queries in well less than a minute.
There is very easy Answer which works
Create Grid of NxN
Now for each Lamp increment the count of all the cells which suppose to be illuminated by the Lamp.
For each query check if cell on that query has value > 0;
For each adjacent cell find out all illuminated cells and reduce the count by 1
This worked fine but failed for size limit when trying for 10000 X 10000 grid

Algorithm - Grid Map find number of sub-blocks with specific property

I have a grid map NxN. Each cell may have the value '0' or '1'. I am trying to find the exact number of distinct rectangle sub-blocks of the map that include a specific number of '1' and this number can be between 1 and 6. I have thought of searching for each possible rectangle but this is very slow for a map of size 500x500 and the solution must be ~ 1 sec for a common desktop computer. Can someone tell me a corresponding problem so I can look for a working algorithm or better can someone suggest me a working algorithm for this problem? Thank you all in advance!
I imagine that your search of all the rectangles is slow because you are actually counting on each possible rectangle. The solution to this is not to count all rectangles, but rather create a second array of NxN which contains the count for the rectangle (0,0..x,y), call this OriginCount. Then to calculate the count for any given rectangle, you will not have to go through the rectangle and count. You can simply use
Count(a,b..c,d) = OriginCount(c,d) + OriginCount(a-1,b-1) -
OriginCount(a-1,d) - OriginCount(c,b-1)
That turns the problem of counting the ones in any given rectangle, from an N2 problem to a discrete or constant time problem, and your code gets in the order of thousands times faster (for your 500x500 case)
Mind you, in order to set up the OriginCount array, you can use the same concept, don't just go count the ones for each rectangle, from 0,0 to x,y. Rather, use the formula
OriginCount(x,y) = OriginCount(x-1,y) + OriginCount(x,y-1) - OriginCount(x-1,y-1) +
GridMap(x,y) == 1 ? 1 : 0;
Mind you, you have to account for edge cases - where x=0 or y=0.

From an interview: Removing rows and columns in an n×n matrix to maximize the sum of remaining values

Given an n×n matrix of real numbers. You are allowed to erase any number (from 0 to n) of rows and any number (from 0 to n) of columns, and after that the sum of the remaining entries is computed. Come up with an algorithm which finds out which rows and columns to erase in order to maximize that sum.
The problem is NP-hard. (So you should not expect a polynomial-time algorithm for solving this problem. There could still be (non-polynomial time) algorithms that are slightly better than brute-force, though.) The idea behind the proof of NP-hardness is that if we could solve this problem, then we could solve the the clique problem in a general graph. (The maximum-clique problem is to find the largest set of pairwise connected vertices in a graph.)
Specifically, given any graph with n vertices, let's form the matrix A with entries a[i][j] as follows:
a[i][j] = 1 for i == j (the diagonal entries)
a[i][j] = 0 if the edge (i,j) is present in the graph (and i≠j)
a[i][j] = -n-1 if the edge (i,j) is not present in the graph.
Now suppose we solve the problem of removing some rows and columns (or equivalently, keeping some rows and columns) so that the sum of the entries in the matrix is maximized. Then the answer gives the maximum clique in the graph:
Claim: In any optimal solution, there is no row i and column j kept for which the edge (i,j) is not present in the graph. Proof: Since a[i][j] = -n-1 and the sum of all the positive entries is at most n, picking (i,j) would lead to a negative sum. (Note that deleting all rows and columns would give a better sum, of 0.)
Claim: In (some) optimal solution, the set of rows and columns kept is the same. This is because starting with any optimal solution, we can simply remove all rows i for which column i has not been kept, and vice-versa. Note that since the only positive entries are the diagonal ones, we do not decrease the sum (and by the previous claim, we do not increase it either).
All of which means that if the graph has a maximum clique of size k, then our matrix problem has a solution with sum k, and vice-versa. Therefore, if we could solve our initial problem in polynomial time, then the clique problem would also be solved in polynomial time. This proves that the initial problem is NP-hard. (Actually, it is easy to see that the decision version of the initial problem — is there a way of removing some rows and columns so that the sum is at least k — is in NP, so the (decision version of the) initial problem is actually NP-complete.)
Well the brute force method goes something like this:
For n rows there are 2n subsets.
For n columns there are 2n subsets.
For an n x n matrix there are 22n subsets.
0 elements is a valid subset but obviously if you have 0 rows or 0 columns the total is 0 so there are really 22n-2+1 subsets but that's no different.
So you can work out each combination by brute force as an O(an) algorithm. Fast. :)
It would be quicker to work out what the maximum possible value is and you do that by adding up all the positive numbers in the grid. If those numbers happen to form a valid sub-matrix (meaning you can create that set by removing rows and/or columns) then there's your answer.
Implicit in this is that if none of the numbers are negative then the complete matrix is, by definition, the answer.
Also, knowing what the highest possible maximum is possibly allows you to shortcut the brute force evaluation since if you get any combination equal to that maximum then that is your answer and you can stop checking.
Also if all the numbers are non-positive, the answer is the maximum value as you can reduce the matrix to a 1 x 1 matrix with that 1 value in it, by definition.
Here's an idea: construct 2n-1 n x m matrices where 1 <= m <= n. Process them one after the other. For each n x m matrix you can calculate:
The highest possible maximum sum (as per above); and
Whether no numbers are positive allowing you to shortcut the answer.
if (1) is below the currently calculate highest maximum sum then you can discard this n x m matrix. If (2) is true then you just need a simple comparison to the current highest maximum sum.
This is generally referred to as a pruning technique.
What's more you can start by saying that the highest number in the n x n matrix is the starting highest maximum sum since obviously it can be a 1 x 1 matrix.
I'm sure you could tweak this into a (slightly more) efficient recursive tree-based search algorithm with the above tests effectively allowing you to eliminate (hopefully many) unnecessary searches.
We can improve on Cletus's generalized brute-force solution by modelling this as a directed graph. The initial matrix is the start node of the graph; its leaves are all the matrices missing one row or column, and so forth. It's a graph rather than a tree, because the node for the matrix without both the first column and row will have two parents - the nodes with just the first column or row missing.
We can optimize our solution by turning the graph into a tree: There's never any point exploring a submatrix with a column or row deleted that comes before the one we deleted to get to the current node, as that submatrix will be arrived at anyway.
This is still a brute-force search, of course - but we've eliminated the duplicate cases where we remove the same rows in different orders.
Here's an example implementation in Python:
def maximize_sum(m):
frontier = [(m, 0, False)]
best = None
best_score = 0
while frontier:
current, startidx, cols_done = frontier.pop()
score = matrix_sum(current)
if score > best_score or not best:
best = current
best_score = score
w, h = matrix_size(current)
if not cols_done:
for x in range(startidx, w):
frontier.append((delete_column(current, x), x, False))
startidx = 0
for y in range(startidx, h):
frontier.append((delete_row(current, y), y, True))
return best_score, best
And here's the output on 280Z28's example matrix:
>>> m = ((1, 1, 3), (1, -89, 101), (1, 102, -99))
>>> maximize_sum(m)
(106, [(1, 3), (1, 101)])
Since nobody asked for an efficient algorithm, use brute force: generate every possible matrix that can be created by removing rows and/or columns from the original matrix, choose the best one. A slightly more efficent version, which most likely can be proved to still be correct, is to generate only those variants where the removed rows and columns contain at least one negative value.
To try it in a simple way:
We need the valid subset of the set of entries {A00, A01, A02, ..., A0n, A10, ...,Ann} which max. sum.
First compute all subsets (the power set).
A valid subset is a member of the power set that for each two contained entries Aij and A(i+x)(j+y), contains also the elements A(i+x)j and Ai(j+y) (which are the remaining corners of the rectangle spanned by Aij and A(i+x)(j+y)).
Aij ...
. .
. .
... A(i+x)(j+y)
By that you can eliminate the invalid ones from the power set and find the one with the biggest sum in the remaining.
I'm sure it can be improved by improving an algorithm for power set generation in order to generate only valid subsets and by that avoiding step 2 (adjusting the power set).
I think there are some angles of attack that might improve upon brute force.
memoization, since there are many distinct sequences of edits that will arrive at the same submatrix.
dynamic programming. Because the search space of matrices is highly redundant, my intuition is that there would be a DP formulation that can save a lot of repeated work
I think there's a heuristic approach, but I can't quite nail it down:
if there's one negative number, you can either take the matrix as it is, remove the column of the negative number, or remove its row; I don't think any other "moves" result in a higher sum. For two negative numbers, your options are: remove neither, remove one, remove the other, or remove both (where the act of removal is either by axing the row or the column).
Now suppose the matrix has only one positive number and the rest are all <=0. You clearly want to remove everything but the positive entry. For a matrix with only 2 positive entries and the rest <= 0, the options are: do nothing, whittle down to one, whittle down to the other, or whittle down to both (resulting in a 1x2, 2x1, or 2x2 matrix).
In general this last option falls apart (imagine a matrix with 50 positives & 50 negatives), but depending on your data (few negatives or few positives) it could provide a shortcut.
Create an n-by-1 vector RowSums, and an n-by-1 vector ColumnSums. Initialize them to the row and column sums of the original matrix. O(n²)
If any row or column has a negative sum, remove edit: the one with the minimum such and update the sums in the other direction to reflect their new values. O(n)
Stop when no row or column has a sum less than zero.
This is an iterative variation improving on another answer. It operates in O(n²) time, but fails for some cases mentioned in other answers, which is the complexity limit for this problem (there are n² entries in the matrix, and to even find the minimum you have to examine each cell once).
Edit: The following matrix has no negative rows or columns, but is also not maximized, and my algorithm doesn't catch it.
1 1 3 goal 1 3
1 -89 101 ===> 1 101
1 102 -99
The following matrix does have negative rows and columns, but my algorithm selects the wrong ones for removal.
-5 1 -5 goal 1
1 1 1 ===> 1
-10 2 -10 2
mine
===> 1 1 1
Compute the sum of each row and column. This can be done in O(m) (where m = n^2)
While there are rows or columns that sum to negative remove the row or column that has the lowest sum that is less than zero. Then recompute the sum of each row/column.
The general idea is that as long as there is a row or a column that sums to nevative, removing it will result in a greater overall value. You need to remove them one at a time and recompute because in removing that one row/column you are affecting the sums of the other rows/columns and they may or may not have negative sums any more.
This will produce an optimally maximum result. Runtime is O(mn) or O(n^3)
I cannot really produce an algorithm on top of my head, but to me it 'smells' like dynamic programming, if it serves as a start point.
Big Edit: I honestly don't think there's a way to assess a matrix and determine it is maximized, unless it is completely positive.
Maybe it needs to branch, and fathom all elimination paths. You never no when a costly elimination will enable a number of better eliminations later. We can short circuit if it's found the theoretical maximum, but other than any algorithm would have to be able to step forward and back. I've adapted my original solution to achieve this behaviour with recursion.
Double Secret Edit: It would also make great strides to reduce to complexity if each iteration didn't need to find all negative elements. Considering that they don't change much between calls, it makes more sense to just pass their positions to the next iteration.
Takes a matrix, the list of current negative elements in the matrix, and the theoretical maximum of the initial matrix. Returns the matrix's maximum sum and the list of moves required to get there. In my mind move list contains a list of moves denoting the row/column removed from the result of the previous operation.
Ie: r1,r1
Would translate
-1 1 0 1 1 1
-4 1 -4 5 7 1
1 2 4 ===>
5 7 1
Return if sum of matrix is the theoretical maximum
Find the positions of all negative elements unless an empty set was passed in.
Compute sum of matrix and store it along side an empty move list.
For negative each element:
Calculate the sum of that element's row and column.
clone the matrix and eliminate which ever collection has the minimum sum (row/column) from that clone, note that action as a move list.
clone the list of negative elements and remove any that are effected by the action taken in the previous step.
Recursively call this algorithm providing the cloned matrix, the updated negative element list and the theoretical maximum. Append the moves list returned to the move list for the action that produced the matrix passed to the recursive call.
If the returned value of the recursive call is greater than the stored sum, replace it and store the returned move list.
Return the stored sum and move list.
I'm not sure if it's better or worse than the brute force method, but it handles all the test cases now. Even those where the maximum contains negative values.
This is an optimization problem and can be solved approximately by an iterative algorithm based on simulated annealing:
Notation: C is number of columns.
For J iterations:
Look at each column and compute the absolute benefit of toggling it (turn it off if it's currently on or turn it on if it's currently off). That gives you C values, e.g. -3, 1, 4. A greedy deterministic solution would just pick the last action (toggle the last column to get a benefit of 4) because it locally improves the objective. But that might lock us into a local optimum. Instead, we probabilistically pick one of the three actions, with probabilities proportional to the benefits. To do this, transform them into a probability distribution by putting them through a Sigmoid function and normalizing. (Or use exp() instead of sigmoid()?) So for -3, 1, 4 you get 0.05, 0.73, 0.98 from the sigmoid and 0.03, 0.42, 0.56 after normalizing. Now pick the action according to the probability distribution, e.g. toggle the last column with probability 0.56, toggle the second column with probability 0.42, or toggle the first column with the tiny probability 0.03.
Do the same procedure for the rows, resulting in toggling one of the rows.
Iterate for J iterations until convergence.
We may also, in early iterations, make each of these probability distributions more uniform, so that we don't get locked into bad decisions early on. So we'd raise the unnormalized probabilities to a power 1/T, where T is high in early iterations and is slowly decreased until it approaches 0. For example, 0.05, 0.73, 0.98 from above, raised to 1/10 results in 0.74, 0.97, 1.0, which after normalization is 0.27, 0.36, 0.37 (so it's much more uniform than the original 0.05, 0.73, 0.98).
It's clearly NP-Complete (as outlined above). Given this, if I had to propose the best algorithm I could for the problem:
Try some iterations of quadratic integer programming, formulating the problem as: SUM_ij a_ij x_i y_j, with the x_i and y_j variables constrained to be either 0 or 1. For some matrices I think this will find a solution quickly, for the hardest cases it would be no better than brute force (and not much would be).
In parallel (and using most of the CPU), use a approximate search algorithm to generate increasingly better solutions. Simulating Annealing was suggested in another answer, but having done research on similar combinatorial optimisation problems, my experience is that tabu search would find good solutions faster. This is probably close to optimal in terms of wandering between distinct "potentially better" solutions in the shortest time, if you use the trick of incrementally updating the costs of single changes (see my paper "Graph domination, tabu search and the football pool problem").
Use the best solution so far from the second above to steer the first by avoiding searching possibilities that have lower bounds worse than it.
Obviously this isn't guaranteed to find the maximal solution. But, it generally would when this is feasible, and it would provide a very good locally maximal solution otherwise. If someone had a practical situation requiring such optimisation, this is the solution that I'd think would work best.
Stopping at identifying that a problem is likely to be NP-Complete will not look good in a job interview! (Unless the job is in complexity theory, but even then I wouldn't.) You need to suggest good approaches - that is the point of a question like this. To see what you can come up with under pressure, because the real world often requires tackling such things.
yes, it's NP-complete problem.
It's hard to easily find the best sub-matrix,but we can easily to find some better sub-matrix.
Assume that we give m random points in the matrix as "feeds". then let them to automatically extend by the rules like :
if add one new row or column to the feed-matrix, ensure that the sum will be incrementive.
,then we can compare m sub-matrix to find the best one.
Let's say n = 10.
Brute force (all possible sets of rows x all possible sets of columns) takes
2^10 * 2^10 =~ 1,000,000 nodes.
My first approach was to consider this a tree search, and use
the sum of positive entries is an upper bound for every node in the subtree
as a pruning method. Combined with a greedy algorithm to cheaply generate good initial bounds, this yielded answers in about 80,000 nodes on average.
but there is a better way ! i later realised that
Fix some choice of rows X.
Working out the optimal columns for this set of rows is now trivial (keep a column if its sum of its entries in the rows X is positive, otherwise discard it).
So we can just brute force over all possible choices of rows; this takes 2^10 = 1024 nodes.
Adding the pruning method brought this down to 600 nodes on average.
Keeping 'column-sums' and incrementally updating them when traversing the tree of row-sets should allow the calculations (sum of matrix etc) at each node to be O(n) instead of O(n^2). Giving a total complexity of O(n * 2^n)
For slightly less than optimal solution, I think this is a PTIME, PSPACE complexity issue.
The GREEDY algorithm could run as follows:
Load the matrix into memory and compute row totals. After that run the main loop,
1) Delete the smallest row,
2) Subtract the newly omitted values from the old row totals
--> Break when there are no more negative rows.
Point two is a subtle detail: subtracted two rows/columns has time complexity n.
While re-summing all but two columns has n^2 time complexity!
Take each row and each column and compute the sum. For a 2x2 matrix this will be:
2 1
3 -10
Row(0) = 3
Row(1) = -7
Col(0) = 5
Col(1) = -9
Compose a new matrix
Cost to take row Cost to take column
3 5
-7 -9
Take out whatever you need to, then start again.
You just look for negative values on the new matrix. Those are values that actually substract from the overall matrix value. It terminates when there're no more negative "SUMS" values to take out (therefore all columns and rows SUM something to the final result)
In an nxn matrix that would be O(n^2)Log(n) I think
function pruneMatrix(matrix) {
max = -inf;
bestRowBitField = null;
bestColBitField = null;
for(rowBitField=0; rowBitField<2^matrix.height; rowBitField++) {
for (colBitField=0; colBitField<2^matrix.width; colBitField++) {
sum = calcSum(matrix, rowBitField, colBitField);
if (sum > max) {
max = sum;
bestRowBitField = rowBitField;
bestColBitField = colBitField;
}
}
}
return removeFieldsFromMatrix(bestRowBitField, bestColBitField);
}
function calcSumForCombination(matrix, rowBitField, colBitField) {
sum = 0;
for(i=0; i<matrix.height; i++) {
for(j=0; j<matrix.width; j++) {
if (rowBitField & 1<<i && colBitField & 1<<j) {
sum += matrix[i][j];
}
}
}
return sum;
}

Find the "largest" dense sub matrix in a large sparse matrix

Given a large sparse matrix (say 10k+ by 1M+) I need to find a subset, not necessarily continuous, of the rows and columns that form a dense matrix (all non-zero elements). I want this sub matrix to be as large as possible (not the largest sum, but the largest number of elements) within some aspect ratio constraints.
Are there any known exact or aproxamate solutions to this problem?
A quick scan on Google seems to give a lot of close-but-not-exactly results. What terms should I be looking for?
edit: Just to clarify; the sub matrix need not be continuous. In fact the row and column order is completely arbitrary so adjacency is completely irrelevant.
A thought based on Chad Okere's idea
Order the rows from largest count to smallest count (not necessary but might help perf)
Select two rows that have a "large" overlap
Add all other rows that won't reduce the overlap
Record that set
Add whatever row reduces the overlap by the least
Repeat at #3 until the result gets to small
Start over at #2 with a different starting pair
Continue until you decide the result is good enough
I assume you want something like this. You have a matrix like
1100101
1110101
0100101
You want columns 1,2,5,7 and rows 1 and 2, right? That submatrix would 4x2 with 8 elements. Or you could go with columns 1,5,7 with rows 1,2,3 which would be a 3x3 matrix.
If you want an 'approximate' method, you could start with a single non-zero element, then go on to find another non-zero element and add it to your list of rows and columns. At some point you'll run into a non-zero element that, if it's rows and columns were added to your collection, your collection would no longer be entirely non-zero.
So for the above matrix, if you added 1,1 and 2,2 you would have rows 1,2 and columns 1,2 in your collection. If you tried to add 3,7 it would cause a problem because 1,3 is zero. So you couldn't add it. You could add 2,5 and 2,7 though. Creating the 4x2 submatrix.
You would basically iterate until you can't find any more new rows and columns to add. That would get you too a local minimum. You could store the result and start again with another start point (perhaps one that didn't fit into your current solution).
Then just stop when you can't find any more after a while.
That, obviously, would take a long time, but I don't know if you'll be able to do it any more quickly.
I know you aren't working on this anymore, but I thought someone might have the same question as me in the future.
So, after realizing this is an NP-hard problem (by reduction to MAX-CLIQUE) I decided to come up with a heuristic that has worked well for me so far:
Given an N x M binary/boolean matrix, find a large dense submatrix:
Part I: Generate reasonable candidate submatrices
Consider each of the N rows to be a M-dimensional binary vector, v_i, where i=1 to N
Compute a distance matrix for the N vectors using the Hamming distance
Use the UPGMA (Unweighted Pair Group Method with Arithmetic Mean) algorithm to cluster vectors
Initially, each of the v_i vectors is a singleton cluster. Step 3 above (clustering) gives the order that the vectors should be combined into submatrices. So each internal node in the hierarchical clustering tree is a candidate submatrix.
Part II: Score and rank candidate submatrices
For each submatrix, calculate D, the number of elements in the dense subset of the vectors for the submatrix by eliminating any column with one or more zeros.
Select the submatrix that maximizes D
I also had some considerations regarding the min number of rows that needed to be preserved from the initial full matrix, and I would discard any candidate submatrices that did not meet this criteria before selecting a submatrix with max D value.
Is this a Netflix problem?
MATLAB or some other sparse matrix libraries might have ways to handle it.
Is your intent to write your own?
Maybe the 1D approach for each row would help you. The algorithm might look like this:
Loop over each row
Find the index of the first non-zero element
Find the index of the non-zero row element with the largest span between non-zero columns in each row and store both.
Sort the rows from largest to smallest span between non-zero columns.
At this point I start getting fuzzy (sorry, not an algorithm designer). I'd try looping over each row, lining up the indexes of the starting point, looking for the maximum non-zero run of column indexes that I could.
You don't specify whether or not the dense matrix has to be square. I'll assume not.
I don't know how efficient this is or what its Big-O behavior would be. But it's a brute force method to start with.
EDIT. This is NOT the same as the problem below.. My bad...
But based on the last comment below, it might be equivilent to the following:
Find the furthest vertically separated pair of zero points that have no zero point between them.
Find the furthest horizontally separated pair of zero points that have no zeros between them ?
Then the horizontal region you're looking for is the rectangle that fits between these two pairs of points?
This exact problem is discussed in a gem of a book called "Programming Pearls" by Jon Bentley, and, as I recall, although there is a solution in one dimension, there is no easy answer for the 2-d or higher dimensional variants ...
The 1=D problem is, effectively, find the largest sum of a contiguous subset of a set of numbers:
iterate through the elements, keeping track of a running total from a specific previous element, and the maximum subtotal seen so far (and the start and end elemnt that generateds it)... At each element, if the maxrunning subtotal is greater than the max total seen so far, the max seen so far and endelemnt are reset... If the max running total goes below zero, the start element is reset to the current element and the running total is reset to zero ...
The 2-D problem came from an attempt to generate a visual image processing algorithm, which was attempting to find, within a stream of brightnesss values representing pixels in a 2-color image, find the "brightest" rectangular area within the image. i.e., find the contained 2-D sub-matrix with the highest sum of brightness values, where "Brightness" was measured by the difference between the pixel's brighness value and the overall average brightness of the entire image (so many elements had negative values)
EDIT: To look up the 1-D solution I dredged up my copy of the 2nd edition of this book, and in it, Jon Bentley says "The 2-D version remains unsolved as this edition goes to print..." which was in 1999.

Resources