I am using PARI/GP which is a mathematics program with some helpful functionality for number theory, especially because it supports very large integers out of the box. For a previous C++ project I had to use a library called BigInt.
At the moment, using PARI/GP I am utilising the gcd() function to calculate the greatest common divisor (GCD) for numbers ranging from 0 to 255 digits in length, so as you can imagine the numbers do get very large! I set a=0 then my loop iterates upwards, each time calculating gcd(a,b) where the b is a long fixed number that never changes.
I was wondering, if perhaps I should use Euler's approach to calculating GCD, which I believe is the following simple formula: gcd(b, a % b) where the % symbol means modulo. Hopefully I got the variables in the correct order!
Is there a rough and quick way to approximate which approach shown above for calculating GCD is quickest? I would, of course, be open minded to other approaches which are quicker.
I do not expect my algorithm to ever finish, this is just an experiment to see how far it can reach based on which approach I use to calculating GCD.
Binary GCD should generally be better than naive Euclid, but a being very small compared to b is a special circumstance that may trigger poor performance from Binary GCD. I’d try one round of Euclid, i.e., gcd(b, a%b) where gcd is Binary GCD.
(But without knowing the underlying problem here, I’m not sure that this is the best advice.)
The best approach is to let pari do the work for you.
first, you can compute the gcd of a large number of inputs stored in a vector v as gcd(v).
? B=10^255; v = vector(10^6,i,random(B));
? gcd(v);
time = 22 ms.
? a = 0; for(i = 1, #v, a = gcd(a,v[i]))
time = 232 ms. \\ much worse
There are 2 reasons for this to be much faster on such small inputs: loop overhead and variable assignments on the one hand and early abort on the other hand (as soon as the intermediate answer is 1, we can stop). You can multiply v by 2, say, to prevent the second optimization; the simple gcd(v) will remain faster [because loop and assignments overhead still occurs, but in C rather than in interpreted GP; for small inputs this overhead is very noticeable, it will become negligible as the sizes increase]
similarly, it should be always faster on average to let the gcd function work out by itself how best to compute gcd(a,b) that to try an "improve" things by using tricks such as gcd(b, a % b) [Note: the order doesn't matter, and this will error out if b = 0, which gcd is clever enough to check]. gcd(a, b-a) will not error out but slow down things on average. For instance, gcd(a,b) will try an initial Euclidean step in case a and b have vastly differing sizes, it shouldn't help to try and add it yourself.
finally, the exact algorithms used depend on the underlying multiprecision library; either native PARI or GNU's GMP, the latter being faster due to a highly optimized implementation. In both cases, as operands sizes increase, this includes Euclid's algorithm, binary plus/minus [ dividing out powers of 2, we can assume a, b odd, then use gcd(b,(a-b)/4) if a = b mod 4 and gcd(b, (a+b)/4) otherwise; divisions are just binary shifts ], and asymptotically fast half-gcd (almost linear in the bit size). The latter is almost surely not being used in your computations since the threshold should be over 10.000 decimal digits. On the other hand, Euclid's algorithm will only be used for tiny (word-size) operands, but since all algorithms are recursive it will eventualy be used, when the size has become tiny enough.
If you want to investigate the speed of the gcd function, try it with integers around 100.000 decimal digits (then double that size, say), you should observe the almost linear complexity.
Just wondering why the base case for Karatsuba multiplication ( shown here: http://www.sanfoundry.com/java-program-karatsuba-multiplication-algorithm/) is chosen to be "N<= 10"? I found "N<= 4, 3, 2 ,1 " will not give me a correct result. Anyone can explain?
Karatsuba's algorithm will work correctly with any "sufficiently large" base case, where "sufficiently large" means "large enough that when it's divided into smaller subproblems, those subproblems are indeed smaller and produce the right answer." In that sense, there isn't "a" base case for Karatsuba as much as a general rule for what base cases might look like.
Honestly, the code you linked doesn't seem like it's a very reasonable implementation of the algorithm. It works with longs, which can already be multiplied in O(1) time on any reasonable system, and their base case is to stop when the numbers are less than 1010, meaning that with 64-bit numbers the recursion always terminates after a single step. A better implementation would likely use something like a BigInteger type that can support arbitrary-precision multiplication. At that point, choosing the optimal base case is a matter of performance tuning. Make the base case have a number of digits that's too small and the recursion to handle smaller numbers will take dramatically more time than just doing a naive multiply. Make the base too high and you'll start to see slowdown as cases better handled by the recursive step instead get spend using naive multiplications.
If you included the source code in your post, you might well have gotten a to-the-point answer sooner.
If you used something like BigInteger.divideAndRemainder(dividend, divisor) to "split" your numbers, you wouldn't run the risk to code something like
long d = y / m;
long c = y - (d * N);
(using a multiplier different from the divisor).
Note that the product of two 10 digit numbers doesn't always fit into Java's long.
Numbers with less than 10 digits can be multiplied natively (x*y), because the result will always fit in a signed 64-bit integer.
Using the long datatype doesn't make much sense though, since most number combinations that doesn't overflow, will just get evaluated natively. You would have to change to BitInteger or something similar, and use much larger numbers to get any gains from the algorithm.
As for why it is failing for lower limits of N, I am not sure. The algorithm have to be able to split both numbers into two similarly sized parts. I guess it ends up with zeros or negative numbers in some cases.
Let P(x) denote the polynomial in question. The least fixed point (LFP) of P is the lowest value of x such that x=P(x). The polynomial has real coefficients. There is no guarantee in general that an LFP will exist, although one is guaranteed to exist if the degree is odd and ≥ 3. I know of an efficient solution if the degree is 3. x=P(x) thus 0=P(x)-x. There is a closed-form cubic formula, solving for x is somewhat trivial and can be hardcoded. Degrees 2 and 1 are similarly easy. It's the more complicated cases that I'm having trouble with, since I can't seem to come up with a good algorithm for arbitrary degree.
EDIT:
I'm only considering real fixed points and taking the least among them, not necessarily the fixed point with the least absolute value.
Just solve f(x) = P(x) - x using your favorite numerical method. For example, you could iterate
x_{n + 1} = x_n - P(x_n) / (P'(x_n) - 1).
You won't find closed-form formula in general because there aren't any closed-form formula for quintic and higher polynomials. Thus, for quintic and higher degree you have to use a numerical method of some sort.
Since you want the least fixed point, you can't get away without finding all real roots of P(x) - x and selecting the smallest.
Finding all the roots of a polynomial is a tricky subject. If you have a black box routine, then by all means use it. Otherwise, consider the following trick:
Form M the companion matrix of P(x) - x
Find all eigenvalues of M
but this requires you have access to a routine for finding eigenvalues (which is another tricky problem, but there are plenty of good libraries).
Otherwise, you can implement the Jenkins-Traub algorithm, which is a highly non trivial piece of code.
I don't really recommend finding a zero (with eg. Newton's method) and deflating until you reach degree one: it is very unstable if not done properly, and you'll lose a lot of accuracy (and it is very difficult to tackle multiple roots with it). The proper way do do it is in fact the above-mentioned Jenkins-Traub algorithm.
This problem is trying to find the "least" (here I'm not sure if you mean in magnitude or actually the smallest, which could be the most negative) root of a polynomial. There is no closed form solution for polynomials of large degree, but there are myriad numerical approaches to finding roots.
As is often the case, Wikipedia is a good place to begin your search.
If you want to find the smallest root, then you can use the rule of signs to pin down the interval where it exists and then use some numerical method to find roots in that interval.
If I say to you:
"I am thinking of a number between 0 and n, and I will tell you if your guess is high or low", then you will immediately reach for binary search.
What if I remove the upper bound? i.e. I am thinking of a positive integer, and you need to guess it.
One possible method would be for you to guess 2, 4, 8, ..., until you guess 2**k for some k and I say "lower". Then you can apply binary search.
Is there a quicker method?
EDIT:
Clearly, any solution is going to take time proportional to the size of the target number. If I chuck Graham's number through the Ackermann function, we'll be waiting a while whatever strategy you pursue.
I could offer this algorithm too: Guess each integer in turn, starting from 1.
It's guaranteed to finish in a finite amount of time, but yet it's clearly much worse than my "powers of 2" strategy. If I can find a worse algorithm (and know that it is worse), then maybe I could find a better one?
For example, instead of powers of 2, maybe I can use powers of 10. Then I find the upper bound in log_10(n) steps, instead of log_2(n) steps. But I have to then search a bigger space. Say k = ceil(log_10(n)). Then I need log_2(10**k - 10**(k-1)) steps for my binary search, which I guess is about 10+log_2(k). For powers of 2, I have roughly log_2(log_2(n)) steps for my search phase. Which wins?
What if I search upwards using n**n? Or some other sequence? Does the prize go to whoever can find the sequence that grows the fastest? Is this a problem with an answer?
Thank you for your thoughts. And my apologies to those of you suggesting I start at MAX_INT or 2**32-1, since I'm clearly drifting away from the bounds of practicality here.
FINAL EDIT:
Hi all,
Thank you for your responses. I accepted the answer by Norman Ramsey (and commenter onebyone) for what I understood to be the following argument: for a target number n, any strategy must be capable of distinguishing between (at least) the numbers from 0..n, which means you need (at least) O(log(n)) comparisons.
However seveal of you also pointed out that the problem is not well-defined in the first place, because it's not possible to pick a "random positive integer" under the uniform probability distribution (or, rather, a uniform probability distribution cannot exist over an infinite set). And once I give you a nonuniform distribution, you can split it in half and apply binary search as normal.
This is a problem that I've often pondered as I walk around, so I'm pleased to have two conclusive answers for it.
If there truly is no upper bound, and all numbers all the way to infinity are equally likely, then there is no optimum way to do this. For any finite guess G, the probability that the number is lower than G is zero and the probability that it is higher is 1 - so there is no finite guess that has an expectation of being higher than the number.
RESPONSE TO JOHN'S EDIT:
By the same reasoning that powers of 10 are expected to be better than powers of 2 (there's only a finite number of possible Ns for which powers of 2 are better, and an infinite number where powers of 10 are better), powers of 20 can be shown to be better than powers of 10.
So basically, yes, the prize goes to fastest-growing sequence (and for the same sequence, the highest starting point) - for any given sequence, it can be shown that a faster growing sequence will win in infinitely more cases. And since for any sequence you name, I can name one that grows faster, and for any integer you name, I can name one higher, there's no answer that can't be bettered. (And every algorithm that will eventually give the correct answer has an expected number of guesses that is infinite, anyway).
People (who have never studied probability) tend to think that "pick a number from 1 to N" means "with equal probability of each", and they act according to their intuitive understanding of probability.
Then when you say "pick any positive integer", they still think it means "with equal probability of each".
This is of course impossible - there exists no discrete probability distribution with domain the positive integers, where p(n) == p(m) for all n, m.
So, the person picking the number must have used some other probability distribution. If you know anything at all about that distribution, then you must base your guessing scheme on that knowledge in order to have the "fastest" solution.
The only way to calculate how "fast" a given guessing scheme is, is to calculate its expected number of guesses to find the answer. You can only do this by assuming a probability distribution for the target number. For example, if they have picked n with probability (1/2) ^ n, then I think your best guessing scheme is "1", "2", "3",... (average 2 guesses). I haven't proved it, though, maybe it's some other sequence of guesses. Certainly the guesses should start small and grow slowly. If they have picked 4 with probability 1 and all other numbers with probability 0, then your best guessing scheme is "4" (average 1 guess). If they have picked a number from 1 to a trillion with uniform distribution, then you should binary search (average about 40 guesses).
I say the only way to define "fast" - you could look at worst case. You have to assume a bound on the target, to prevent all schemes having the exact same speed, namely "no bound on the worst case". But you don't have to assume a distribution, and the answer for the "fastest" algorithm under this definition is obvious - binary search starting at the bound you selected. So I'm not sure this definition is terribly interesting...
In practice, you don't know the distribution, but can make a few educated guesses based on the fact that the picker is a human being, and what numbers humans are capable of conceiving. As someone says, if the number they picked is the Ackermann function for Graham's number, then you're probably in trouble. But if you know that they are capable of representing their chosen number in digits, then that actually puts an upper limit on the number they could have chosen. But it still depends what techniques they might have used to generate and record the number, and hence what your best knowledge is of the probability of the number being of each particular magnitude.
Worst case, you can find it in time logarithmic in the size of the answer using exactly the methods you describe. You might use Ackermann's function to find an upper bound faster than logarithmic time, but then the binary search between the number guessed and the previous guess will require time logarithmic in the size of the interval, which (if guesses grow very quickly) is close to logarithmic in the size of the answer.
It would be interesting to try to prove that there is no faster algorithm (e.g., O(log log n)), but I have no idea how to do it.
Mathematically speaking:
You cannot ever correctly find this integer. In fact, strictly speaking, the statement "pick any positive integer" is meaningless as it cannot be done: although you as a person may believe you can do it, you are actually picking from a bounded set - you are merely unconscious of the bounds.
Computationally speaking:
Computationally, we never deal with infinites, as we would have no way of storing or checking against any number larger than, say, the theoretical maximum number of electrons in the universe. As such, if you can estimate a maximum based on the number of bits used in a register on the device in question, you can carry out a binary search.
Binary search can be generalized: each time set of possible choices should be divided into to subsets of probability 0.5. In this case it's still applicable to infinite sets, but still requires knowledge about distribution (for finite sets this requirement is forgotten quite often)...
My main refinement is that I'd start with a higher first guess instead of 2, around the average of what I'd expect them to choose. Starting with 64 would save 5 guesses vs starting with 2 when the number's over 64, at the cost of 1-5 more when it's less. 2 makes sense if you expect the answer to be around 1 or 2 half the time. You could even keep a memory of past answers to decide the best first guess. Another improvement could be to try negatives when they say "lower" on 0.
If this is guessing the upper bound of a number being generated by a computer, I'd start with 2**[number of bits/2], then scale up or down by powers of two. This, at least, gets you the closest to the possible values in the least number of jumps.
However, if this is a purely mathematical number, you can start with any value, since you have an infinite range of values, so your approach would be fine.
Since you do not specify any probability distribution of the numbers (as others have correctly mentioned, there is no uniform distribution over all the positive integers), the No Free Lunch Theorem give the answer: any method (that does not repeat the same number twice) is as good as any other.
Once you start making assumptions about the distribution (f.x. it is a human being or binary computer etc. that chooses the number) this of course changes, but as the problem is stated any algorithm is as good as any other when averaged over all possible distributions.
Use binary search starting with MAX_INT/2, where MAX_INT is the biggest number your platform can handle.
No point in pretending we can actually have infinite possibilities.
UPDATE: Given that you insist on entering the realms of infinity, I'll just vote to close your question as not programming related :-)
The standard default assumption of a uniform distribution for all positive integers doesn't lead to a solution, so you should start by defining the probability distribution of the numbers to guess.
I'd probably start my guessing with Graham's Number.
The practical answer within a computing context would be to start with whatever is the highest number that can (realistically) be represented by the type you are using. In case of some BigInt type you'd probably want to make a judgement call about what is realistic... obviously ultimately the bound in that case is the available memory... but performance-wise something smaller may be more realistic.
Your starting point should be the largest number you can think of plus 1.
There is no 'efficient search' for a number in an infinite range.
EDIT: Just to clarify, for any number you can think of there are still infinitely more numbers that are 'greater' than your number, compared to a finite collection of numbers that are 'less' than your number. Therefore, assuming the chosen number is randomly selected from all positive numbers, you have zero | (approaching zero) chance of being 'above' the chosen number.
I gave an answer to a similar question "Optimal algorithm to guess any random integer without limits?"
Actually, provided there algorithm not just searches for the conceived number, but it estimates a median of the distribution of the number that you may re-conceive at each step! And also the number could be even from the real domain ;)
Does anyone have experience with algorithms for evaluating hypergeometric functions? I would be interested in general references, but I'll describe my particular problem in case someone has dealt with it.
My specific problem is evaluating a function of the form 3F2(a, b, 1; c, d; 1) where a, b, c, and d are all positive reals and c+d > a+b+1. There are many special cases that have a closed-form formula, but as far as I know there are no such formulas in general. The power series centered at zero converges at 1, but very slowly; the ratio of consecutive coefficients goes to 1 in the limit. Maybe something like Aitken acceleration would help?
I tested Aitken acceleration and it does not seem to help for this problem (nor does Richardson extrapolation). This probably means Pade approximation doesn't work either. I might have done something wrong though, so by all means try it for yourself.
I can think of two approaches.
One is to evaluate the series at some point such as z = 0.5 where convergence is rapid to get an initial value and then step forward to z = 1 by plugging the hypergeometric differential equation into an ODE solver. I don't know how well this works in practice; it might not, due to z = 1 being a singularity (if I recall correctly).
The second is to use the definition of 3F2 in terms of the Meijer G-function. The contour integral defining the Meijer G-function can be evaluated numerically by applying Gaussian or doubly-exponential quadrature to segments of the contour. This is not terribly efficient, but it should work, and it should scale to relatively high precision.
Is it correct that you want to sum a series where you know the ratio of successive terms and it is a rational function?
I think Gosper's algorithm and the rest of the tools for proving hypergeometric identities (and finding them) do exactly this, right? (See Wilf and Zielberger's A=B book online.)