Filling two fractional knapsacks using the same items - algorithm

I have two knapsacks, let's call them knapsack A, and knapsack B, each knapsack has a max weight limit. We also have some item types that we can take with us. Each item type has a price, and two values - value X, and value Y. Each of these values is added to it's respective knapsack when used, so that the following is true:
We are operating with the following limits (note that this is not a solution, just an example of the core principle):
Knapsack A
capacity: 10
Knapsack B
capacity: 20
items:
Item 1
price: 10
X: 3
Y: 9
After we 'take' Item 1 we get the following knapsack state:
Knapsack A
remaining capacity: 7 (capacity of A - X of item 1)
Knapsack B
remaining capacity: 11 (capacity of B - Y of item 1)
To reach this state we have paid 10 units (price of Item 1).
We're trying to find the best combination of items (we may use each item an infinite amount of times) so that we fill both knapsacks perfectly, and at the lowest possible price. We may use fractions of each item, this means that X, Y, and price all get divided by the fraction.
How can I achieve this?
I have tried modifying a fractional knapsack algorithm, but I don't know what parts/what to modify in order to achieve my goals.

As user3386109 notes, there is a straightforward linear program.
For each item i, let ui ≥ 0 be the (fractional) number of
units purchased of i. We want to
minimize ∑i pricei ui
(minimize the sum over items i of the product of the price of i and the
purchase quantity of i), subject to linear constraints ensuring that we
exactly fill both knapsacks:
A: ∑i Xi ui = capacityA
B: ∑i Yi ui = capacityB.
Now, you can write a program to expand the sums and hand the resulting
equations off to a solver library. I use
GLOP at
work; sample code below.
If you don’t want to use an off-the-shelf solver, this linear program is
quite special in that it only has two constraints, so there’s likely a
specialized algorithm (e.g.,  maybe we could use Megiddo’s
low-dimensional LP algorithm to solve the dual). But it won’t be as
simple as fractional knapsack.
import collections
from ortools.linear_solver import pywraplp
Item = collections.namedtuple("Item", ("price", "X", "Y"))
def optimize(A, B, items):
solver = pywraplp.Solver.CreateSolver("GLOP")
quantities = [solver.NumVar(0, solver.infinity(), "") for i in items]
solver.Minimize(sum(i.price * u for (i, u) in zip(items, quantities)))
solver.Add(sum(i.X * u for (i, u) in zip(items, quantities)) == A)
solver.Add(sum(i.Y * u for (i, u) in zip(items, quantities)) == B)
solver.Solve()
return solver.Objective().Value(), [
(i, u.solution_value()) for (i, u) in zip(items, quantities)
]
def test():
obj_value, quantities = optimize(
10,
20,
[Item(price=10, X=3, Y=9), Item(price=5, X=5, Y=7), Item(price=100, X=1, Y=1)],
)
print("# cost: {}".format(obj_value))
for i, u in quantities:
print("# {}: {}".format(i, u))
if __name__ == "__main__":
test()
# cost: 18.750000000000007
# Item(price=10, X=3, Y=9): 1.250000000000001
# Item(price=5, X=5, Y=7): 1.2499999999999991
# Item(price=100, X=1, Y=1): 0.0

Related

Better than brute force algorithms for a coin-flipping game

I have a problem and I feel like there should be a well-known algorithm for solving it that's better than just brute force, but I can't think of one, so I'm asking here.
The problem is as follows: given n sorted (from low to high) lists containing m probabilities, choose one index for each list such that the sum of the chosen indexes is less than m. Then, for each list, we flip a coin, where the chance of it landing heads is equal to the probability at the chosen index for that list. Maximize the chance of the coin landing heads at least once.
Are there any algorithms for solving this problem that are better than just brute force?
This problem seems most similar to the knapsack problem, except the value of the items in the knapsack isn't merely a sum of the items in the knapsack. (Written in Python, instead of sum(p for p in chosen_probabilities) it's 1 - math.prod([1 - p for p in chosen_probabilities])) And, there's restrictions on what items you can add given what items are already in the knapsack. For example, if the index = 3 item for a particular list is already in the knapsack, then adding in the item with index = 2 for that same list isn't allowed (since you can only pick one index for each list). So there are certain items that can and can't be added to the knapsack based on what items are already in it.
Linear optimization won't work because the values in the lists don't increase linearly, the final coin probability isn't linear with respect to the chosen probabilities, and our constraint is on the sum of the indexes, rather than the values in the lists themselves. As David has pointed out, linear optimization will work if you use binary variables to pick out the indexes and a logarithm to deal with the non-linearity.
EDIT:
I've found that explaining the motivation behind this problem can be helpful for understanding it. Imagine you have 10 seconds to solve a problem, and three different ways to solve it. You have models of how likely it is that each method will solve the problem, given how many seconds you try that method for, but if you switch methods, you lose all progress on the one you were previously trying. What methods should you try and for how long?
Maximizing 1 - math.prod([1 - p for p in chosen_probabilities]) is equivalent to minimizing math.prod([1 - p for p in chosen_probabilities]), which is equivalent to minimizing the log of this objective, which is a linear function of 0-1 indicator variables, so you could do an integer programming formulation this way.
I can't promise that this will be much better than brute force. The problem is that math.log(1 - p) is well approximated by -p when p is close to zero. My intuition is that for nontrivial instances it will be qualitatively similar to using integer programming to solve subset sum, which doesn't go particularly well.
If you're willing to settle for a bicriteria approximation scheme (get an answer such that the sum of the chosen indexes is less than m, that is at least as good as the best answer summing to less than (1 − ε) m) then you can round up the probability to multiples of ε and use dynamic programming to get an algorithm that runs in time polynomial in n, m, 1/ε.
Here is working code for David Eisenstat's solution.
To understand the implementation, I think it helps to go through the math first.
As a reminder, there are n lists, each with m options. (In the motivating example at the bottom of the question, each list represents a method for solving the problem, and you are given m-1 seconds to solve the problem. Each list is such that list[index] gives the chance of solving the problem with that method if the method is run for index seconds.)
We let the lists be stored in a matrix called d (named data in the code), where each row in the matrix is a list. (And thus each column represents an index, or, if following the motivating example, an amount of time.)
The probability of the coin landing heads, given that we chose index j* for list i, is computed as
We would like to maximize this.
(To explain the stats behind this equation, we're computing 1 minus the probability that the coin doesn't land on heads. The probability that the coin doesn't land on heads is the probability that each flip doesn't land on heads. The probability that a single flip doesn't land on heads is just 1 minus the probability that does land on heads. And the probability it does land on heads is the number we've chosen, d[i][j*]. Thus, the total probability that all the flips land on tails is just the product of the probability that each one lands on tails. And then the probability that the coin lands on heads is just 1 minus the probability that all the flips land on tails.)
Which, as David pointed out, is the same as minimizing:
Which is the same as minimizing:
Which is equivalent to:
Then, since this is linear sum, we can turn it into an integer program.
We'll be minimizing:
This lets the computer choose the indexes by allowing it to create an n by m matrix of 1s and 0s called x where the 1s pick out particular indexes. We'll then define rules so that it doesn't pick out invalid sets of indexes.
The first rule is that you have to pick out an index for each list:
The second rule is that you have to respect the constraint that the indexes chosen must sum to m or less:
And that's it! Then we can just tell the computer to minimize that sum according to those rules. It will spit out an x matrix with a single 1 on each row to tell us which index it has picked for the list on that row.
In code (using the motivating example), this is implemented as:
'''
Requirements:
cvxopt==1.2.6
cvxpy==1.1.10
ecos==2.0.7.post1
numpy==1.20.1
osqp==0.6.2.post0
qdldl==0.1.5.post0
scipy==1.6.1
scs==2.1.2
'''
import math
import cvxpy as cp
import numpy as np
# number of methods
n = 3
# if you have 10 seconds, there are 11 options for each method (0 seconds, 1 second, ..., 10 seconds)
m = 11
# method A has 30% chance of working if run for at least 3 seconds
# equivalent to [0, 0, 0, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]
A_list = [0, 0, 0] + [0.3] * (m - 3)
# method B has 30% chance of working if run for at least 3 seconds
# equivalent to [0, 0, 0, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]
B_list = [0, 0, 0] + [0.3] * (m - 3)
# method C has 40% chance of working if run for 4 seconds, 30% otherwise
# equivalent to [0.3, 0.3, 0.3, 0.3, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4]
C_list = [0.3, 0.3, 0.3, 0.3] + [0.4] * (m - 4)
data = [A_list, B_list, C_list]
# do the logarithm
log_data = []
for row in data:
log_row = []
for col in row:
# deal with domain exception
if col == 1:
new_col = float('-inf')
else:
new_col = math.log(1 - col)
log_row.append(new_col)
log_data.append(log_row)
log_data = np.array(log_data)
x = cp.Variable((n, m), boolean=True)
objective = cp.Minimize(cp.sum(cp.multiply(log_data, x)))
# the current solver doesn't work with equalities, so each equality must be split into two inequalities.
# see https://github.com/cvxgrp/cvxpy/issues/1112
one_choice_per_method_constraint = [cp.sum(x[i]) <= 1 for i in range(n)] + [cp.sum(x[i]) >= 1 for i in range(n)]
# constrain the solution to not use more time than is allowed
# note that the time allowed is (m - 1), not m, because time is 1-indexed and the lists are 0-indexed
js = np.tile(np.array(list(range(m))), (n, 1))
time_constraint = [cp.sum(cp.multiply(js, x)) <= m - 1, cp.sum(cp.multiply(js, x)) >= m - 1]
constraints = one_choice_per_method_constraint + time_constraint
prob = cp.Problem(objective, constraints)
result = prob.solve()
def compute_probability(data, choices):
# compute 1 - ((1 - p1) * (1 - p2) * ...)
return 1 - np.prod(np.add(1, -np.multiply(data, choices)))
print("Choices:")
print(x.value)
'''
Choices:
[[0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]]
'''
print("Chance of success:")
print(compute_probability(data, x.value))
'''
Chance of success:
0.7060000000000001
'''
And there we have it! The computer has correctly determined that running method A for 3 seconds, method B for 3 seconds, and method C for 4 seconds is optimal. (Remember that the x matrix is 0-indexed, while the times are 1-indexed.)
Thank you, David, for the suggestion!

Conditional sampling of binary vectors (?)

I'm trying to find a name for my problem, so I don't have to re-invent wheel when coding an algorithm which solves it...
I have say 2,000 binary (row) vectors and I need to pick 500 from them. In the picked sample I do column sums and I want my sample to be as close as possible to a pre-defined distribution of the column sums. I'll be working with 20 to 60 columns.
A tiny example:
Out of the vectors:
110
010
011
110
100
I need to pick 2 to get column sums 2, 1, 0. The solution (exact in this case) would be
110
100
My ideas so far
one could maybe call this a binary multidimensional knapsack, but I did not find any algos for that
Linear Programming could help, but I'd need some step by step explanation as I got no experience with it
as exact solution is not always feasible, something like simulated annealing brute force could work well
a hacky way using constraint solvers comes to mind - first set the constraints tight and gradually loosen them until some solution is found - given that CSP should be much faster than ILP...?
My concrete, practical (if the approximation guarantee works out for you) suggestion would be to apply the maximum entropy method (in Chapter 7 of Boyd and Vandenberghe's book Convex Optimization; you can probably find several implementations with your favorite search engine) to find the maximum entropy probability distribution on row indexes such that (1) no row index is more likely than 1/500 (2) the expected value of the row vector chosen is 1/500th of the predefined distribution. Given this distribution, choose each row independently with probability 500 times its distribution likelihood, which will give you 500 rows on average. If you need exactly 500, repeat until you get exactly 500 (shouldn't take too many tries due to concentration bounds).
Firstly I will make some assumptions regarding this problem:
Regardless whether the column sum of the selected solution is over or under the target, it weighs the same.
The sum of the first, second, and third column are equally weighted in the solution (i.e. If there's a solution whereas the first column sum is off by 1, and another where the third column sum is off by 1, the solution are equally good).
The closest problem I can think of this problem is the Subset sum problem, which itself can be thought of a special case of Knapsack problem.
However both of these problem are NP-Complete. This means there are no polynomial time algorithm that can solve them, even though it is easy to verify the solution.
If I were you the two most arguably efficient solution of this problem are linear programming and machine learning.
Depending on how many columns you are optimising in this problem, with linear programming you can control how much finely tuned you want the solution, in exchange of time. You should read up on this, because this is fairly simple and efficient.
With Machine learning, you need a lot of data sets (the set of vectors and the set of solutions). You don't even need to specify what you want, a lot of machine learning algorithms can generally deduce what you want them to optimise based on your data set.
Both solution has pros and cons, you should decide which one to use yourself based on the circumstances and problem set.
This definitely can be modeled as (integer!) linear program (many problems can). Once you have it, you can use a program such as lpsolve to solve it.
We model vector i is selected as x_i which can be 0 or 1.
Then for each column c, we have a constraint:
sum of all (x_i * value of i in column c) = target for column c
Taking your example, in lp_solve this could look like:
min: ;
+x1 +x4 +x5 >= 2;
+x1 +x4 +x5 <= 2;
+x1 +x2 +x3 +x4 <= 1;
+x1 +x2 +x3 +x4 >= 1;
+x3 <= 0;
+x3 >= 0;
bin x1, x2, x3, x4, x5;
If you are fine with a heuristic based search approach, here is one.
Go over the list and find the minimum squared sum of the digit wise difference between each bit string and the goal. For example, if we are looking for 2, 1, 0, and we are scoring 0, 1, 0, we would do it in the following way:
Take the digit wise difference:
2, 0, 1
Square the digit wise difference:
4, 0, 1
Sum:
5
As a side note, squaring the difference when scoring is a common method when doing heuristic search. In your case, it makes sense because bit strings that have a 1 in as the first digit are a lot more interesting to us. In your case this simple algorithm would pick first 110, then 100, which would is the best solution.
In any case, there are some optimizations that could be made to this, I will post them here if this kind of approach is what you are looking for, but this is the core of the algorithm.
You have a given target binary vector. You want to select M vectors out of N that have the closest sum to the target. Let's say you use the eucilidean distance to measure if a selection is better than another.
If you want an exact sum, have a look at the k-sum problem which is a generalization of the 3SUM problem. The problem is harder than the subset sum problem, because you want an exact number of elements to add to a target value. There is a solution in O(N^(M/2)). lg N), but that means more than 2000^250 * 7.6 > 10^826 operations in your case (in the favorable case where vectors operations have a cost of 1).
First conclusion: do not try to get an exact result unless your vectors have some characteristics that may reduce the complexity.
Here's a hill climbing approach:
sort the vectors by number of 1's: 111... first, 000... last;
use the polynomial time approximate algorithm for the subset sum;
you have an approximate solution with K elements. Because of the order of elements (the big ones come first), K should be a little as possible:
if K >= M, you take the M first vectors of the solution and that's probably near the best you can do.
if K < M, you can remove the first vector and try to replace it with 2 or more vectors from the rest of the N vectors, using the same technique, until you have M vectors. To sumarize: split the big vectors into smaller ones until you reach the correct number of vectors.
Here's a proof of concept with numbers, in Python:
import random
def distance(x, y):
return abs(x-y)
def show(ls):
if len(ls) < 10:
return str(ls)
else:
return ", ".join(map(str, ls[:5]+("...",)+ls[-5:]))
def find(is_xs, target):
# see https://en.wikipedia.org/wiki/Subset_sum_problem#Pseudo-polynomial_time_dynamic_programming_solution
S = [(0, ())] # we store indices along with values to get the path
for i, x in is_xs:
T = [(x + t, js + (i,)) for t, js in S]
U = sorted(S + T)
y, ks = U[0]
S = [(y, ks)]
for z, ls in U:
if z == target: # use the euclidean distance here if you want an approximation
return ls
if z != y and z < target:
y, ks = z, ls
S.append((z, ls))
ls = S[-1][1] # take the closest element to target
return ls
N = 2000
M = 500
target = 1000
xs = [random.randint(0, 10) for _ in range(N)]
print ("Take {} numbers out of {} to make a sum of {}", M, xs, target)
xs = sorted(xs, reverse = True)
is_xs = list(enumerate(xs))
print ("Sorted numbers: {}".format(show(tuple(is_xs))))
ls = find(is_xs, target)
print("FIRST TRY: {} elements ({}) -> {}".format(len(ls), show(ls), sum(x for i, x in is_xs if i in ls)))
splits = 0
while len(ls) < M:
first_x = xs[ls[0]]
js_ys = [(i, x) for i, x in is_xs if i not in ls and x != first_x]
replace = find(js_ys, first_x)
splits += 1
if len(replace) < 2 or len(replace) + len(ls) - 1 > M or sum(xs[i] for i in replace) != first_x:
print("Give up: can't replace {}.\nAdd the lowest elements.")
ls += tuple([i for i, x in is_xs if i not in ls][len(ls)-M:])
break
print ("Replace {} (={}) by {} (={})".format(ls[:1], first_x, replace, sum(xs[i] for i in replace)))
ls = tuple(sorted(ls[1:] + replace)) # use a heap?
print("{} elements ({}) -> {}".format(len(ls), show(ls), sum(x for i, x in is_xs if i in ls)))
print("AFTER {} splits, {} -> {}".format(splits, ls, sum(x for i, x in is_xs if i in ls)))
The result is obviously not guaranteed to be optimal.
Remarks:
Complexity: find has a polynomial time complexity (see the Wikipedia page) and is called at most M^2 times, hence the complexity remains polynomial. In practice, the process is reasonably fast (split calls have a small target).
Vectors: to ensure that you reach the target with the minimum of elements, you can improve the order of element. Your target is (t_1, ..., t_c): if you sort the t_js from max to min, you get the more importants columns first. You can sort the vectors: by number of 1s and then by the presence of a 1 in the most important columns. E.g. target = 4 8 6 => 1 1 1 > 0 1 1 > 1 1 0 > 1 0 1 > 0 1 0 > 0 0 1 > 1 0 0 > 0 0 0.
find (Vectors) if the current sum exceed the target in all the columns, then you're not connecting to the target (any vector you add to the current sum will bring you farther from the target): don't add the sum to S (z >= target case for numbers).
I propose a simple ad hoc algorithm, which, broadly speaking, is a kind of gradient descent algorithm. It seems to work relatively well for input vectors which have a distribution of 1s “similar” to the target sum vector, and probably also for all “nice” input vectors, as defined in a comment of yours. The solution is not exact, but the approximation seems good.
The distance between the sum vector of the output vectors and the target vector is taken to be Euclidean. To minimize it means minimizing the sum of the square differences off sum vector and target vector (the square root is not needed because it is monotonic). The algorithm does not guarantee to yield the sample that minimizes the distance from the target, but anyway makes a serious attempt at doing so, by always moving in some locally optimal direction.
The algorithm can be split into 3 parts.
First of all the first M candidate output vectors out of the N input vectors (e.g., N=2000, M=500) are put in a list, and the remaining vectors are put in another.
Then "approximately optimal" swaps between vectors in the two lists are done, until either the distance would not decrease any more, or a predefined maximum number of iterations is reached. An approximately optimal swap is one where removing the first vector from the list of output vectors causes a maximal decrease or minimal increase of the distance, and then, after the removal of the first vector, adding the second vector to the same list causes a maximal decrease of the distance. The whole swap is avoided if the net result is not a decrease of the distance.
Then, as a last phase, "optimal" swaps are done, again stopping on no decrease in distance or maximum number of iterations reached. Optimal swaps cause a maximal decrease of the distance, without requiring the removal of the first vector to be optimal in itself. To find an optimal swap all vector pairs have to be checked. This phase is much more expensive, being O(M(N-M)), while the previous "approximate" phase is O(M+(N-M))=O(N). Luckily, when entering this phase, most of the work has already been done by the previous phase.
from typing import List, Tuple
def get_sample(vects: List[Tuple[int]], target: Tuple[int], n_out: int,
max_approx_swaps: int = None, max_optimal_swaps: int = None,
verbose: bool = False) -> List[Tuple[int]]:
"""
Get a sample of the input vectors having a sum close to the target vector.
Closeness is measured in Euclidean metrics. The output is not guaranteed to be
optimal (minimum square distance from target), but a serious attempt is made.
The max_* parameters can be used to avoid too long execution times,
tune them to your needs by setting verbose to True, or leave them None (∞).
:param vects: the list of vectors (tuples) with the same number of "columns"
:param target: the target vector, with the same number of "columns"
:param n_out: the requested sample size
:param max_approx_swaps: the max number of approximately optimal vector swaps,
None means unlimited (default: None)
:param max_optimal_swaps: the max number of optimal vector swaps,
None means unlimited (default: None)
:param verbose: print some info if True (default: False)
:return: the sample of n_out vectors having a sum close to the target vector
"""
def square_distance(v1, v2):
return sum((e1 - e2) ** 2 for e1, e2 in zip(v1, v2))
n_vec = len(vects)
assert n_vec > 0
assert n_out > 0
n_rem = n_vec - n_out
assert n_rem > 0
output = vects[:n_out]
remain = vects[n_out:]
n_col = len(vects[0])
assert n_col == len(target) > 0
sumvect = (0,) * n_col
for outvect in output:
sumvect = tuple(map(int.__add__, sumvect, outvect))
sqdist = square_distance(sumvect, target)
if verbose:
print(f"sqdist = {sqdist:4} after"
f" picking the first {n_out} vectors out of {n_vec}")
if max_approx_swaps is None:
max_approx_swaps = sqdist
n_approx_swaps = 0
while sqdist and n_approx_swaps < max_approx_swaps:
# find the best vect to subtract (the square distance MAY increase)
sqdist_0 = None
index_0 = None
sumvect_0 = None
for index in range(n_out):
tmp_sumvect = tuple(map(int.__sub__, sumvect, output[index]))
tmp_sqdist = square_distance(tmp_sumvect, target)
if sqdist_0 is None or sqdist_0 > tmp_sqdist:
sqdist_0 = tmp_sqdist
index_0 = index
sumvect_0 = tmp_sumvect
# find the best vect to add,
# but only if there is a net decrease of the square distance
sqdist_1 = sqdist
index_1 = None
sumvect_1 = None
for index in range(n_rem):
tmp_sumvect = tuple(map(int.__add__, sumvect_0, remain[index]))
tmp_sqdist = square_distance(tmp_sumvect, target)
if sqdist_1 > tmp_sqdist:
sqdist_1 = tmp_sqdist
index_1 = index
sumvect_1 = tmp_sumvect
if sumvect_1:
tmp = output[index_0]
output[index_0] = remain[index_1]
remain[index_1] = tmp
sqdist = sqdist_1
sumvect = sumvect_1
n_approx_swaps += 1
else:
break
if verbose:
print(f"sqdist = {sqdist:4} after {n_approx_swaps}"
f" approximately optimal swap{'s'[n_approx_swaps == 1:]}")
diffvect = tuple(map(int.__sub__, sumvect, target))
if max_optimal_swaps is None:
max_optimal_swaps = sqdist
n_optimal_swaps = 0
while sqdist and n_optimal_swaps < max_optimal_swaps:
# find the best pair to swap,
# but only if the square distance decreases
best_sqdist = sqdist
best_diffvect = diffvect
best_pair = None
for i0 in range(M):
tmp_diffvect = tuple(map(int.__sub__, diffvect, output[i0]))
for i1 in range(n_rem):
new_diffvect = tuple(map(int.__add__, tmp_diffvect, remain[i1]))
new_sqdist = sum(d * d for d in new_diffvect)
if best_sqdist > new_sqdist:
best_sqdist = new_sqdist
best_diffvect = new_diffvect
best_pair = (i0, i1)
if best_pair:
tmp = output[best_pair[0]]
output[best_pair[0]] = remain[best_pair[1]]
remain[best_pair[1]] = tmp
sqdist = best_sqdist
diffvect = best_diffvect
n_optimal_swaps += 1
else:
break
if verbose:
print(f"sqdist = {sqdist:4} after {n_optimal_swaps}"
f" optimal swap{'s'[n_optimal_swaps == 1:]}")
return output
from random import randrange
C = 30 # number of columns
N = 2000 # total number of vectors
M = 500 # number of output vectors
F = 0.9 # fill factor of the target sum vector
T = int(M * F) # maximum value + 1 that can be appear in the target sum vector
A = 10000 # maximum number of approximately optimal swaps, may be None (∞)
B = 10 # maximum number of optimal swaps, may be None (unlimited)
target = tuple(randrange(T) for _ in range(C))
vects = [tuple(int(randrange(M) < t) for t in target) for _ in range(N)]
sample = get_sample(vects, target, M, A, B, True)
Typical output:
sqdist = 2639 after picking the first 500 vectors out of 2000
sqdist = 9 after 27 approximately optimal swaps
sqdist = 1 after 4 optimal swaps
P.S.: As it stands, this algorithm is not limited to binary input vectors, integer vectors would work too. Intuitively I suspect that the quality of the optimization could suffer, though. I suspect that this algorithm is more appropriate for binary vectors.
P.P.S.: Execution times with your kind of data are probably acceptable with standard CPython, but get better (like a couple of seconds, almost a factor of 10) with PyPy. To handle bigger sets of data, the algorithm would have to be translated to C or some other language, which should not be difficult at all.

Towers of Hanoi - Bellman equation solution

I have to implement an algorithm that solves the Towers of Hanoi game for k pods and d rings in a limited number of moves (let's say 4 pods, 10 rings, 50 moves for example) using Bellman dynamic programming equation (if the problem is solvable of course).
Now, I understand the logic behind the equation:
where V^T is the objective function at time T, a^0 is the action at time 0, x^0 is the starting configuration, H_0 is cumulative gain f(x^0, a^0)=x^1.
The cardinality of the state space is $k^d$ and I get that a good representation for a state is a number in base k: d digits that can go from 0 to k-1. Each digit represents a ring and the digit can go from 0 to k-1, that are the labels of the k rings.
I want to minimize the number of moves for going from the initial configuration (10 rings on the first pod) to the end one (10 rings on the last pod).
What I don't get is: how do I write my objective function?
The first you need to do is choose a reward function H_t(s,a) which will define you goal. Once this function is chosen, the (optimal) value function is defined and all you have to do is compute it.
The idea of dynamic programming for the Bellman equation is that you should compute V_t(s) bottom-up: you start with t=T, then t=T-1 and so on until t=0.
The initial case is simply given by:
V_T(s) = 0, ∀s
You can compute V_{T-1}(x) ∀x from V_T:
V_{T-1}(x) = max_a [ H_{T-1}(x,a) ]
Then you can compute V_{T-2}(x) ∀s from V_{T-1}:
V_{T-2}(x) = max_a [ H_{T-2}(x,a) + V_{T-1}(f(x,a)) ]
And you keep on computing V_{t-1}(x) ∀s from V_{t}:
V_{t-1}(x) = max_a [ H_{t-1}(x,a) + V_{t}(f(x,a)) ]
until you reach V_0.
Which gives the algorithm:
forall x:
V[T](x) ← 0
for t from T-1 to 0:
forall x:
V[t](x) ← max_a { H[t](x,a) + V[t-1](f(x,a)) }
What actually was requested was this:
def k_hanoi(npods,nrings):
if nrings == 1 and npods > 1: #one remaining ring: just one move
return 1
if npods == 3:
return 2**nrings - 1 #optimal solution with 3 pods take 2^d -1 moves
if npods > 3 and nrings > 0:
sol = []
for pivot in xrange(1, nrings): #loop on all possible pivots
sol.append(2*k_hanoi(npods, pivot)+k_hanoi(npods-1, nrings-pivot))
return min(sol) #minimization on pivot
k = 4
d = 10
print k_hanoi(k, d)
I think it is the Frame algorithm, with optimization on the pivot chosen to divide the disks in two subgroups. I also think someone demonstrated this is optimal for 4 pegs (in 2014 or something like that? Not sure btw) and conjectured to be optimal for more than 4 pegs. The limitation on the number of moves can be implemented easily.
The value function in this case was the number of steps needed to go from the initial configuration to the ending one and it needed be minimized. Thank you all for the contribution.

Discrete optimization algorithm

I'm trying to decide on the best approach for my problem, which is as follows:
I have a set of objects (about 3k-5k) which I want to uniquely assign to about 10 groups (1 group per object).
Each object has a set of grades corresponding with how well it fits within each group.
Each group has a capacity of objects it can manage (the constraints).
My goal is to maximize the sum of grades my assignments receive.
For example, let's say I have 3 objects (o1, o2, o3) and 2 groups (g1,g2) with a cap. of 1 object each.
Now assume the grades are:
o1: g1=11, g2=8
o2: g1=10, g2=5
o3: g1=5, g2=6
In that case, for the optimal result g1 should receive o2, and g2 should receive o1, yielding a total of 10+8=18 points.
Note that the number of objects can either exceed the sum of quotas (e.g. leaving o3 as a "leftover") or fall short from filling the quotas.
How should I address this problem (Traveling Salesman, sort of a weighted Knap-Sack etc.)? How long should brute-forcing it take on a regular computer? Are there any standard tools such as the linprog function in Matlab that support this sort of problem?
It can be solved with min cost flow algorithm.
The graph can look the following way:
It should be bipartite. The left part represents objects(one vertex for each object). The right part represents groups(one vertex for each group). There is an edge from each vertex from the left part to each vertex from the right part with capacity = 1 and cost = -grade for this pair. There is also an edge from the source vertex to each vertex from the left part with capacity = 1 and cost = 0 and there is an edge from each vertex from the right part to the sink vertex(sink and source are two additional vertices) with capacity = constraints for this group and cost = 0.
The answer is -the cheapest flow cost from the source to the sink.
It is possible to implement it with O(N^2 * M * log(N + M)) time complexity(using Dijkstra algorithm with potentials)(N is the number of objects, M is the number of groups).
This can be solved with an integer program. Binary variables x_{ij} state if object i is assigned to group j. The objective maximized \sum_{i,j} s_{ij}x_{ij}, where s_{ij} is the score associated with assigning i to j and x_{ij} is whether i is assigned to j. You have two types of constraints:
\sum_i x_{ij} <= c_j for all j, the capacity constraints for groups
\sum_j x_{ij} <= 1 for all i, limiting objects to be assigned to at most one group
Here's how you would implement it in R -- the lp function in R is quite similar to the linprog function in matlab.
# Score matrix
S <- matrix(c(11, 10, 5, 8, 5, 6), nrow=3)
# Capacity vector
cvec <- c(1, 1)
# Helper function to construct constraint matrices
unit.vec <- function(pos, n) {
ret <- rep(0, n)
ret[pos] <- 1
ret
}
# Capacity constraints
cap <- t(sapply(1:ncol(S), function(j) rep(unit.vec(j, ncol(S)), nrow(S))))
# Object assignment constraints
obj <- t(sapply(1:nrow(S), function(i) rep(unit.vec(i, nrow(S)), each=ncol(S))))
# Solve the LP
res <- lp(direction="max",
objective.in=as.vector(t(S)),
const.mat=rbind(cap, obj),
const.dir="<=",
const.rhs=c(cvec, rep(1, nrow(S))),
all.bin=TRUE)
# Grab assignments and objective
sln <- t(matrix(res$solution, nrow=ncol(S)))
apply(sln, 1, function(x) ifelse(sum(x) > 0.999, which(x == 1), NA))
# [1] 2 1 NA
res$objval
# [1] 18
Although this is modeled with binary variables, it will solve quite efficiently assuming integral capacities.

Fast solution to Subset sum

Consider this way of solving the Subset sum problem:
def subset_summing_to_zero (activities):
subsets = {0: []}
for (activity, cost) in activities.iteritems():
old_subsets = subsets
subsets = {}
for (prev_sum, subset) in old_subsets.iteritems():
subsets[prev_sum] = subset
new_sum = prev_sum + cost
new_subset = subset + [activity]
if 0 == new_sum:
new_subset.sort()
return new_subset
else:
subsets[new_sum] = new_subset
return []
I have it from here:
http://news.ycombinator.com/item?id=2267392
There is also a comment which says that it is possible to make it "more efficient".
How?
Also, are there any other ways to solve the problem which are at least as fast as the one above?
Edit
I'm interested in any kind of idea which would lead to speed-up. I found:
https://en.wikipedia.org/wiki/Subset_sum_problem#cite_note-Pisinger09-2
which mentions a linear time algorithm. But I don't have the paper, perhaps you, dear people, know how it works? An implementation perhaps? Completely different approach perhaps?
Edit 2
There is now a follow-up:
Fast solution to Subset sum algorithm by Pisinger
I respect the alacrity with which you're trying to solve this problem! Unfortunately, you're trying to solve a problem that's NP-complete, meaning that any further improvement that breaks the polynomial time barrier will prove that P = NP.
The implementation you pulled from Hacker News appears to be consistent with the pseudo-polytime dynamic programming solution, where any additional improvements must, by definition, progress the state of current research into this problem and all of its algorithmic isoforms. In other words: while a constant speedup is possible, you're very unlikely to see an algorithmic improvement to this solution to the problem in the context of this thread.
However, you can use an approximate algorithm if you require a polytime solution with a tolerable degree of error. In pseudocode blatantly stolen from Wikipedia, this would be:
initialize a list S to contain one element 0.
for each i from 1 to N do
let T be a list consisting of xi + y, for all y in S
let U be the union of T and S
sort U
make S empty
let y be the smallest element of U
add y to S
for each element z of U in increasing order do
//trim the list by eliminating numbers close to one another
//and throw out elements greater than s
if y + cs/N < z ≤ s, set y = z and add z to S
if S contains a number between (1 − c)s and s, output yes, otherwise no
Python implementation, preserving the original terms as closely as possible:
from bisect import bisect
def ssum(X,c,s):
""" Simple impl. of the polytime approximate subset sum algorithm
Returns True if the subset exists within our given error; False otherwise
"""
S = [0]
N = len(X)
for xi in X:
T = [xi + y for y in S]
U = set().union(T,S)
U = sorted(U) # Coercion to list
S = []
y = U[0]
S.append(y)
for z in U:
if y + (c*s)/N < z and z <= s:
y = z
S.append(z)
if not c: # For zero error, check equivalence
return S[bisect(S,s)-1] == s
return bisect(S,(1-c)*s) != bisect(S,s)
... where X is your bag of terms, c is your precision (between 0 and 1), and s is the target sum.
For more details, see the Wikipedia article.
(Additional reference, further reading on CSTheory.SE)
While my previous answer describes the polytime approximate algorithm to this problem, a request was specifically made for an implementation of Pisinger's polytime dynamic programming solution when all xi in x are positive:
from bisect import bisect
def balsub(X,c):
""" Simple impl. of Pisinger's generalization of KP for subset sum problems
satisfying xi >= 0, for all xi in X. Returns the state array "st", which may
be used to determine if an optimal solution exists to this subproblem of SSP.
"""
if not X:
return False
X = sorted(X)
n = len(X)
b = bisect(X,c)
r = X[-1]
w_sum = sum(X[:b])
stm1 = {}
st = {}
for u in range(c-r+1,c+1):
stm1[u] = 0
for u in range(c+1,c+r+1):
stm1[u] = 1
stm1[w_sum] = b
for t in range(b,n+1):
for u in range(c-r+1,c+r+1):
st[u] = stm1[u]
for u in range(c-r+1,c+1):
u_tick = u + X[t-1]
st[u_tick] = max(st[u_tick],stm1[u])
for u in reversed(range(c+1,c+X[t-1]+1)):
for j in reversed(range(stm1[u],st[u])):
u_tick = u - X[j-1]
st[u_tick] = max(st[u_tick],j)
return st
Wow, that was headache-inducing. This needs proofreading, because, while it implements balsub, I can't define the right comparator to determine if the optimal solution to this subproblem of SSP exists.
I don't know much python, but there is an approach called meet in the middle.
Pseudocode:
Divide activities into two subarrays, A1 and A2
for both A1 and A2, calculate subsets hashes, H1 and H2, the way You do it in Your question.
for each (cost, a1) in H1
if(H2.contains(-cost))
return a1 + H2[-cost];
This will allow You to double the number of elements of activities You can handle in reasonable time.
I apologize for "discussing" the problem, but a "Subset Sum" problem where the x values are bounded is not the NP version of the problem. Dynamic programing solutions are known for bounded x value problems. That is done by representing the x values as the sum of unit lengths. The Dynamic programming solutions have a number of fundamental iterations that is linear with that total length of the x's. However, the Subset Sum is in NP when the precision of the numbers equals N. That is, the number or base 2 place values needed to state the x's is = N. For N = 40, the x's have to be in the billions. In the NP problem the unit length of the x's increases exponentially with N.That is why the dynamic programming solutions are not a polynomial time solution to the NP Subset Sum problem. That being the case, there are still practical instances of the Subset Sum problem where the x's are bounded and the dynamic programming solution is valid.
Here are three ways to make the code more efficient:
The code stores a list of activities for each partial sum. It is more efficient in terms of both memory and time to just store the most recent activity needed to make the sum, and work out the rest by backtracking once a solution is found.
For each activity the dictionary is repopulated with the old contents (subsets[prev_sum] = subset). It is faster to simply grow a single dictionary
Splitting the values in two and applying a meet in the middle approach.
Applying the first two optimisations results in the following code which is more than 5 times faster:
def subset_summing_to_zero2 (activities):
subsets = {0:-1}
for (activity, cost) in activities.iteritems():
for prev_sum in subsets.keys():
new_sum = prev_sum + cost
if 0 == new_sum:
new_subset = [activity]
while prev_sum:
activity = subsets[prev_sum]
new_subset.append(activity)
prev_sum -= activities[activity]
return sorted(new_subset)
if new_sum in subsets: continue
subsets[new_sum] = activity
return []
Also applying the third optimisation results in something like:
def subset_summing_to_zero3 (activities):
A=activities.items()
mid=len(A)//2
def make_subsets(A):
subsets = {0:-1}
for (activity, cost) in A:
for prev_sum in subsets.keys():
new_sum = prev_sum + cost
if new_sum and new_sum in subsets: continue
subsets[new_sum] = activity
return subsets
subsets = make_subsets(A[:mid])
subsets2 = make_subsets(A[mid:])
def follow_trail(new_subset,subsets,s):
while s:
activity = subsets[s]
new_subset.append(activity)
s -= activities[activity]
new_subset=[]
for s in subsets:
if -s in subsets2:
follow_trail(new_subset,subsets,s)
follow_trail(new_subset,subsets2,-s)
if len(new_subset):
break
return sorted(new_subset)
Define bound to be the largest absolute value of the elements.
The algorithmic benefit of the meet in the middle approach depends a lot on bound.
For a low bound (e.g. bound=1000 and n=300) the meet in the middle only gets a factor of about 2 improvement other the first improved method. This is because the dictionary called subsets is densely populated.
However, for a high bound (e.g. bound=100,000 and n=30) the meet in the middle takes 0.03 seconds compared to 2.5 seconds for the first improved method (and 18 seconds for the original code)
For high bounds, the meet in the middle will take about the square root of the number of operations of the normal method.
It may seem surprising that meet in the middle is only twice as fast for low bounds. The reason is that the number of operations in each iteration depends on the number of keys in the dictionary. After adding k activities we might expect there to be 2**k keys, but if bound is small then many of these keys will collide so we will only have O(bound.k) keys instead.
Thought I'd share my Scala solution for the discussed pseudo-polytime algorithm described in wikipedia. It's a slightly modified version: it figures out how many unique subsets there are. This is very much related to a HackerRank problem described at https://www.hackerrank.com/challenges/functional-programming-the-sums-of-powers. Coding style might not be excellent, I'm still learning Scala :) Maybe this is still helpful for someone.
object Solution extends App {
var input = "1000\n2"
System.setIn(new ByteArrayInputStream(input.getBytes()))
println(calculateNumberOfWays(readInt, readInt))
def calculateNumberOfWays(X: Int, N: Int) = {
val maxValue = Math.pow(X, 1.0/N).toInt
val listOfValues = (1 until maxValue + 1).toList
val listOfPowers = listOfValues.map(value => Math.pow(value, N).toInt)
val lists = (0 until maxValue).toList.foldLeft(List(List(0)): List[List[Int]]) ((newList, i) =>
newList :+ (newList.last union (newList.last.map(y => y + listOfPowers.apply(i)).filter(z => z <= X)))
)
lists.last.count(_ == X)
}
}

Resources