Given a bit mask (with M bits set, i.e. popcount(bit_mask) == M), I would like to generate M distinct bit masks that have 1 set bit (of the given bit mask) toggled.
The above problem is reduced to the current Title, "How to reset the Nth set bit of a bit mask"
For a bit mask 0xE7 (popcount(0xE7) == 6), the following 6 bit masks will be generated
0xE6 (the 1st set bit is toggled)
0xE5 (the 2nd set bit is toggled)
0xE3 (the 3rd set bit is toggled)
0xC7 (the 4th set bit is toggled)
0xA7 (the 5th set bit is toggled)
0x67 (the 6th set bit is toggled)
My current codes use parallel bit deposit instruction (of Intel processor), but it is not portable (I think).
_pdep_u32(~0x1U, 0xE7U) == 0xE6U
_pdep_u32(~0x2U, 0xE7U) == 0xE5U
_pdep_u32(~0x4U, 0xE7U) == 0xE3U
_pdep_u32(~0x8U, 0xE7U) == 0xC7U
_pdep_u32(~0x10U, 0xE7U) == 0xA7U
_pdep_u32(~0x20U, 0xE7U) == 0x67U
Since you need to generate the whole sequence of masks, you can enumerate the 1 bits in order instead of providing random access.
That is easy to do with the standard bit operations.
To enumerate the 1 bits:
for (mask_bit = mask&-mask; mask_bit; mask_bit = mask&~(mask-(mask_bit<<1))) {
// mask_bit is the next 1 bit in mask
// next output mask is then mask &~ mask_bit
}
Related
For instance, the 0x123 value is stored to a register. What do the bits [7:3] mean for in the value? Are they talking about the binary value of 0x123?
The value 0x123 is 12316, which is 29110, which is 0001001000112.
The most sensible way to number bits is giving the LSB — Least Significant Bit — the bit position number of 0. The next bit to the right gets 1 and so on. This way each bit offers the opportunity to contribute 2N to the value of the number, where N is its bit position number. If the bit is 1 it contributes that value, otherwise no contribution is made to the value.
Base 10 works the same: a number like 405 decomposes as 4×102 + 0×10^1 + 5×100.
And to be clear in the old days some computers numbered bits in the other direction, which worked alright when only one size of item is considered, but modern computers now work with bytes, shorts, words, etc.., so keeping the LSB as bit position number 0 regardless of data size makes the most sense.
9876543210 bit position # (decimal numbers)
000100100011 binary digits
So this number is 28 + 25 + 21 + 20, which is 256 + 32 + 2 + 1 = 29110
Bits [7:3] are the *'ed ones:
*****
9876543210 bit position # (decimal numbers)
000100100011 binary digits
*****
We might write that bits [7:3] of that number is 00100.
Let's say we have an 10-bit binary number, where we represent each digit with a letter. So we have:
9876543210 bit position # (decimal numbers)
abcdefghij binary number represeted by 8 variables (each is one bit)
0011110000 mask in your example (0xF0)
----------& and operation
00cdef0000 result after and
---------->>4 shift operation
000000cdef result after shift right by 4
This number, 000000cdef will be a number between 0 and 1510.
That sequence has "extracted" the 4-bit field as an unsigned number.
Remember also that in some cases, the 4-bit field [7:4] may not be the leftmost field: if the value were 16-bits, then there are 8 bits above 7. The mask of 0xF0 will remove those upper 8 bits as well as clearing the lower 4 bits. Turns out clearing the lower 4 bits isn't necessary there, since the shifting will do that on its own.
If the field you're interested in is leftmost or rightmost, fewer operations are necessary to extract it.
There are other sequences that can do the same extraction. For one, we can shift first, then mask:
9876543210 bit position # (decimal numbers)
abcdefghij binary number represeted by 8 variables (each is one bit)
---------->>4 shift operation
0000abcdef result after shift right by 4
0000001111 mask (0xF: the one's need to move over compared to 0xF0)
----------& mask operation
000000cdef result after mask
I have a number X , I want to check the number of powers of 2 it have ?
For Ex
N=7 ans is 2 , 2*2
N=20 ans is 4, 2*2*2*2
Similar I want to check the next power of 2
For Ex:
N=14 Ans=16
Is there any Bit Hack for this without using for loops ?
Like we are having a one line solution to check if it's a power of 2 X&(X-1)==0,similarly like that ?
GCC has a built-in instruction called __builtin_clz() that returns the number of leading zeros in an integer. So for example, assuming a 32-bit int, the expression p = 32 - __builtin_clz(n) will tell you how many bits are needed to store the integer n, and 1 << p will give you the next highest power of 2 (provided p<32, of course).
There are also equivalent functions that work with long and long long integers.
Alternatively, math.h defines a function called frexp() that returns the base-2 exponent of a double-precision number. This is likely to be less efficient because your integer will have to be converted to a double-precision value before it is passed to this function.
A number is power of two if it has only single '1' in its binary value. For example, 2 = 00000010, 4 = 00000100, 8 = 00001000 and so on. So you can check it using counting the no. of 1's in its bit value. If count is 1 then the number is power of 2 and vice versa.
You can take help from here and here to avoid for loops for counting set bits.
If count is not 1 (means that Value is not power of 2) then take position of its first set bit from MSB and the next power of 2 value to this number is the value having only set bit at position + 1. For example, number 3 = 00000011. Its first set bit from MSB is 2nd bit. Therefore the next power of 2 number is a value having only set bit at 3rd position. i.e. 00000100 = 4.
The problem statement is the following:
Given a number x, find the smallest Sparse number which greater than or equal to x
A number is Sparse if there are no two adjacent 1s in its binary representation. For example 5 (binary representation: 101) is sparse, but 6 (binary representation: 110) is not sparse.
I'm taking the problem from this post where the most efficient solution is listed as having a running time of O(logn):
1) Find binary of the given number and store it in a
boolean array.
2) Initialize last_finalized bit position as 0.
2) Start traversing the binary from least significant bit.
a) If we get two adjacent 1's such that next (or third)
bit is not 1, then
(i) Make all bits after this 1 to last finalized
bit (including last finalized) as 0.
(ii) Update last finalized bit as next bit.
What isn't clear in the post is what is meant by "finalized bit." It seems that the algorithm starts out by inserting the binary representation of a number into a std::vector using a while loop in which it ANDS the input (which is a number x) with 1 and then pushes that back into the vector but, at least from the provided description, its not clear why this is done. Is there a clearer explanation (or even approach) to an efficient solution for this problem?
EDIT:
// Start from second bit (next to LSB)
for (int i=1; i<n-1; i++)
{
// If current bit and its previous bit are 1, but next
// bit is not 1.
if (bin[i] == 1 && bin[i-1] == 1 && bin[i+1] != 1)
{
// Make the next bit 1
bin[i+1] = 1;
// Make all bits before current bit as 0 to make
// sure that we get the smallest next number
for (int j=i; j>=last_final; j--)
bin[j] = 0;
// Store position of the bit set so that this bit
// and bits before it are not changed next time.
last_final = i+1;
}
}
If you see any sequence "011" in the binary representation of your number, then change the '0' to a '1' and set every bit after it to '0' (since that gives the minimum).
The algorithm suggests starting from the right (the least significant bit), but if you start from the left, find the leftmost sequence "011" and do as above, you get the solution one half of the time. The other half is when the next bit to the left of this sequence is a '1'. When you change the '0' to a '1', you create a new "011" sequence that needs to be treated the same way.
The "last finalized bit" is the leftmost '0' bit that sees only '0' bits to its right. This is because all of those '0's won't change in the next steps.
So here are some observation to solve this question:-
Convert the number in its binary format now if the last digits is 0 then we can append 1 and 0 both at the end but if the last digit is 1 then we can only append 0 at the end.
So naive approach is to do a simple iteration and check for every number but we can optimize this approach so for that if we look closely to some example
let say n=5 -> 101 next sparse is 5 (101)
let say n=14 -> 1110 next sparse is 16 (10000)
let say n=39 ->100111 next sparse is 40 (101000)
let say n=438 -> 110110110 next sparse is 512 (1000000000)
To optimize naive approach the idea here is to use the BIT-MANIPULATION
the concept that if we AND a bit sequence with a shifted version of itself, we’re effectively removing the trailing 1 from every sequence of consecutive 1s.
for n=5
0101 (5)
& 1010 (5<<1)
---------
0000
so as you get the value of n&(n<<1) to be zero means the number you have does not have any consecutive 1's in it ( because if it is not zero then there must be a sequence of consecutive 1's in our number) so this will be answer
for n=14
01110 (14)
& 11100 (14<<1)
----------------
01100
so the value is not zero then just increment our number by 1 so our new number is 15
now again perform same things
01111 (15)
& 11110 (15<<1)
------------------------------
01110
again our number is not zero then increment number by 1 and perform same for n = 16
010000 (16)
& 100000 (16<<1)
------------------------
000000
so now our number become zero so we have now encounter a number which does not contains any consecutive 1's so our answer is 16.
So in the similar manner you can check for other number too.
Hope you get the idea if so then upvote. Happy Coding!
int nextSparse(int n) {
// code here
while(true)
{
if(n&(n<<1))
n++;
else
return n;
}
}
Time Complexity will be O(logn).
On Page 140 of Programming Pearls, 2nd Edition, Jon proposed an implementation of sets with bit vectors.
We'll turn now to two final structures that exploit the fact that our sets represent integers. Bit vectors are an old friend from Column 1. Here are their private data and functions:
enum { BITSPERWORD = 32, SHIFT = 5, MASK = 0x1F };
int n, hi, *x;
void set(int i) { x[i>>SHIFT] |= (1<<(i & MASK)); }
void clr(int i) { x[i>>SHIFT] &= ~(1<<(i & MASK)); }
int test(int i) { return x[i>>SHIFT] &= (1<<(i & MASK)); }
As I gathered, the central idea of a bit vector to represent an integer set, as described in Column 1, is that the i-th bit is turned on if and only if the integer i is in the set.
But I am really at a loss at the algorithms involved in the above three functions. And the book doesn't give an explanation.
I can only get that i & MASK is to get the lower 5 bits of i, while i>>SHIFT is to move i 5 bits toward the right.
Anybody would elaborate more on these algorithms? Bit operations always seem a myth to me, :(
Bit Fields and You
I'll use a simple example to explain the basics. Say you have an unsigned integer with four bits:
[0][0][0][0] = 0
You can represent any number here from 0 to 15 by converting it to base 2. Say we have the right end be the smallest:
[0][1][0][1] = 5
So the first bit adds 1 to the total, the second adds 2, the third adds 4, and the fourth adds 8. For example, here's 8:
[1][0][0][0] = 8
So What?
Say you want to represent a binary state in an application-- if some option is enabled, if you should draw some element, and so on. You probably don't want to use an entire integer for each one of these- it'd be using a 32 bit integer to store one bit of information. Or, to continue our example in four bits:
[0][0][0][1] = 1 = ON
[0][0][0][0] = 0 = OFF //what a huge waste of space!
(Of course, the problem is more pronounced in real life since 32-bit integers look like this:
[0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0] = 0
The answer to this is to use a bit field. We have a collection of properties (usually related ones) which we will flip on and off using bit operations. So, say, you might have 4 different lights on a piece of hardware that you want to be on or off.
3 2 1 0
[0][0][0][0] = 0
(Why do we start with light 0? I'll explain this in a second.)
Note that this is an integer, and is stored as an integer, but is used to represent multiple states for multiple objects. Crazy! Say we turn lights 2 and 1 on:
3 2 1 0
[0][1][1][0] = 6
The important thing you should note here: There's probably no obvious reason why lights 2 and 1 being on should equal six, and it may not be obvious how we would do anything with this scheme of information storage. It doesn't look more obvious if you add more bits:
3 2 1 0
[1][1][1][0] = 0xE \\what?
Why do we care about this? Do we have exactly one state for each number between 0 and 15?How are we going to manage this without some insane series of switch statements? Ugh...
The Light at the End
So if you've worked with binary arithmetic a bit before, you might realize that the relationship between the numbers on the left and the numbers on the right is, of course, base 2. That is:
1*(23) + 1*(22) + 1*(21) +0 *(20) = 0xE
So each light is present in the exponent of each term of the equation. If the light is on, there is a 1 next to its term- if the light is off, there is a zero. Take the time to convince yourself that there is exactly one integer between 0 and 15 that corresponds to each state in this numbering scheme.
Bit operators
Now that we have this done, let's take a second to see what bitshifting does to integers in this setup.
[0][0][0][1] = 1
When you shift bits to the left or the right in an integer, it literally moves the bits left and right. (Note: I 100% disavow this explanation for negative numbers! There be dragons!)
1<<2 = 4
[0][1][0][0] = 4
4>>1 = 2
[0][0][1][0] = 2
You will encounter similar behavior when shifting numbers represented with more than one bit. Also, it shouldn't be hard to convince yourself that x>>0 or x<<0 is just x. Doesn't shift anywhere.
This probably explains the naming scheme of the Shift operators to anyone who wasn't familiar with them.
Bitwise operations
This representation of numbers in binary can also be used to shed some light on the operations of bitwise operators on integers. Each bit in the first number is xor-ed, and-ed, or or-ed with its fellow number. Take a second to venture to wikipedia and familiarize yourself with the function of these Boolean operators - I'll explain how they function on numbers but I don't want to rehash the general idea in great detail.
...
Welcome back! Let's start by examining the effect of the OR (|) operator on two integers, stored in four bit.
OR OPERATOR ON:
[1][0][0][1] = 0x9
[1][1][0][0] = 0xC
________________
[1][1][0][1] = 0xD
Tough! This is a close analogue to the truth table for the boolean OR operator. Notice that each column ignores the adjacent columns and simply fills in the result column with the result of the first bit and the second bit OR'd together. Note also that the value of anything or'd with 1 is 1 in that particular column. Anything or'd with zero remains the same.
The table for AND (&) is interesting, though somewhat inverted:
AND OPERATOR ON:
[1][0][0][1] = 0x9
[1][1][0][0] = 0xC
________________
[1][0][0][0] = 0x8
In this case we do the same thing- we perform the AND operation with each bit in a column and put the result in that bit. No column cares about any other column.
Important lesson about this, which I invite you to verify by using the diagram above: anything AND-ed with zero is zero. Also, equally important- nothing happens to numbers that are AND-ed with one. They stay the same.
The final table, XOR, has behavior which I hope you all find predictable by now.
XOR OPERATOR ON:
[1][0][0][1] = 0x9
[1][1][0][0] = 0xC
________________
[0][1][0][1] = 0x5
Each bit is being XOR'd with its column, yadda yadda, and so on. But look closely at the first row and the second row. Which bits changed? (Half of them.) Which bits stayed the same? (No points for answering this one.)
The bit in the first row is being changed in the result if (and only if) the bit in the second row is 1!
The one lightbulb example!
So now we have an interesting set of tools we can use to flip individual bits. Let's go back to the lightbulb example and focus only on the first lightbulb.
0
[?] \\We don't know if it's one or zero while coding
We know that we have an operation that can always make this bit equal to one- the OR 1 operator.
0|1 = 1
1|1 = 1
So, ignoring the rest of the bulbs, we could do this
4_bit_lightbulb_integer |= 1;
and know for sure that we did nothing but set the first lightbulb to ON.
3 2 1 0
[0][0][0][?] = 0 or 1? \\4_bit_lightbulb_integer
[0][0][0][1] = 1
________________
[0][0][0][1] = 0x1
Similarly, we can AND the number with zero. Well- not quite zero- we don't want to affect the state of the other bits, so we will fill them in with ones.
I'll use the unary (one-argument) operator for bit negation. The ~ (NOT) bitwise operator flips all of the bits in its argument. ~(0X1):
[0][0][0][1] = 0x1
________________
[1][1][1][0] = 0xE
We will use this in conjunction with the AND bit below.
Let's do 4_bit_lightbulb_integer & 0xE
3 2 1 0
[0][1][0][?] = 4 or 5? \\4_bit_lightbulb_integer
[1][1][1][0] = 0xE
________________
[0][1][0][0] = 0x4
We're seeing a lot of integers on the right-hand-side which don't have any immediate relevance. You should get used to this if you deal with bit fields a lot. Look at the left-hand side. The bit on the right is always zero and the other bits are unchanged. We can turn off light 0 and ignore everything else!
Finally, you can use the XOR bit to flip the first bit selectively!
3 2 1 0
[0][1][0][?] = 4 or 5? \\4_bit_lightbulb_integer
[0][0][0][1] = 0x1
________________
[0][1][0][*] = 4 or 5?
We don't actually know what the value of * is now- just that flipped from whatever ? was.
Combining Bit Shifting and Bitwise operations
The interesting fact about these two operations is when taken together they allow you to manipulate selective bits.
[0][0][0][1] = 1 = 1<<0
[0][0][1][0] = 2 = 1<<1
[0][1][0][0] = 4 = 1<<2
[1][0][0][0] = 8 = 1<<3
Hmm. Interesting. I'll mention the negation operator here (~) as it's used in a similar way to produce the needed bit values for ANDing stuff in bit fields.
[1][1][1][0] = 0xE = ~(1<<0)
[1][1][0][1] = 0xD = ~(1<<1)
[1][0][1][1] = 0xB = ~(1<<2)
[0][1][1][1] = 0X7 = ~(1<<3)
Are you seeing an interesting relationship between the shift value and the corresponding lightbulb position of the shifted bit?
The canonical bitshift operators
As alluded to above, we have an interesting, generic method for turning on and off specific lights with the bit-shifters above.
To turn on a bulb, we generate the 1 in the right position using bit shifting, and then OR it with the current lightbulb positions. Say we want to turn on light 3, and ignore everything else. We need to get a bit shifting operation that ORs
3 2 1 0
[?][?][?][?] \\all we know about these values at compile time is where they are!
and 0x8
[1][0][0][0] = 0x8
Which is easy, thanks to bitshifting! We'll pick the number of the light and switch the value over:
1<<3 = 0x8
and then:
4_bit_lightbulb_integer |= 0x8;
3 2 1 0
[1][?][?][?] \\the ? marks have not changed!
And we can guarantee that the bit for the 3rd lightbulb is set to 1 and that nothing else has changed.
Clearing a bit works similarly- we'll use the negated bits table above to, say, clear light 2.
~(1<<2) = 0xB = [1][0][1][1]
4_bit_lightbulb_integer & 0xB:
3 2 1 0
[?][?][?][?]
[1][0][1][1]
____________
[?][0][?][?]
The XOR method of flipping bits is the same idea as the OR one.
So the canonical methods of bit switching are this:
Turn on the light i:
4_bit_lightbulb_integer|=(1<<i)
Turn off light i:
4_bit_lightbulb_integer&=~(1<<i)
Flip light i:
4_bit_lightbulb_integer^=(1<<i)
Wait, how do I read these?
In order to check a bit we can simply zero out all of the bits except for the one we care about. We'll then check to see if the resulting value is greater than zero- since this is the only value that could possibly be nonzero, it will make the entire integer nonzero if and only if it is nonzero. For example, to check bit 2:
1<<2:
[0][1][0][0]
4_bit_lightbulb_integer:
[?][?][?][?]
1<<2 & 4_bit_lightbulb_integer:
[0][?][0][0]
Remember from the previous examples that the value of ? didn't change. Remember also that anything AND 0 is 0. So, we can say for sure that if this value is greater than zero, the switch at position 2 is true and the lightbulb is zero. Similarly, if the value is off, the value of the entire thing will be zero.
(You can alternately shift the entire value of 4_bit_lightbulb_integer over by i bits and AND it with 1. I don't remember off the top of my head if one is faster than the other but I doubt it.)
So the canonical checking function:
Check if bit i is on:
if (4_bit_lightbulb_integer & 1<<i) {
\\do whatever
}
The specifics
Now that we have a complete set of tools for bitwise operations, we can look at the specific example here. This is basically the same idea- except a much more concise and powerful way of executing it. Let's look at this function:
void set(int i) { x[i>>SHIFT] |= (1<<(i & MASK)); }
From the canonical implementation I'm going to make a guess that this is trying to set some bits to 1! Let's take an integer and look at what's going on here if i feed the value 0x32 (50 in decimal) into i:
x[0x32>>5] |= (1<<(0x32 & 0x1f))
Well, that's a mess.. let's dissect this operation on the right. For convenience, pretend there are 24 more irrelevant zeros, since these are both 32 bit integers.
...[0][0][0][1][1][1][1][1] = 0x1F
...[0][0][1][1][0][0][1][0] = 0x32
________________________
...[0][0][0][1][0][0][1][0] = 0x12
It looks like everything is being cut off at the boundary on top where 1s turn into zeros. This technique is called Bit Masking. Interestingly, the boundary here restricts the resulting values to be between 0 and 31... Which is exactly the number of bit positions we have for a 32 bit integer!
x[0x32>>5] |= (1<<(0x12))
Let's look at the other half.
...[0][0][1][1][0][0][1][0] = 0x32
Shift five bits to the right:
...[0][0][0][0][0][0][0][1] = 0x01
Note that this transformation exactly destroyed all information from the first part of the function- we have 32-5 = 27 remaining bits which could be nonzero. This indicates which of 227 integers in the array of integers are selected. So the simplified equation is now:
x[1] |= (1<<0x12)
This just looks like the canonical bit-setting operation! We've just chosen
So the idea is to use the first 27 bits to pick an integer to shift and the last five bits indicate which bit of the 32 in that integer to shift.
The key to understanding what's going on is to recognize that BITSPERWORD = 2SHIFT. Thus, x[i>>SHIFT] finds which 32-bit element of the array x has the bit corresponding to i. (By shifting i 5 bits to the right, you're simply dividing by 32.) Once you have located the correct element of x, the lower 5 bits of i can then be used to find which particular bit of x[i>>SHIFT] corresponds to i. That's what i & MASK does; by shifting 1 by that number of bits, you move the bit corresponding to 1 to the exact position within x[i>>SHIFT] that corresponds to the ith bit in x.
Here's a bit more of an explanation:
Imagine that we want capacity for N bits in our bit vector. Since each int holds 32 bits, we will need (N + 31) / 32 int values for our storage (that is, N/32 rounded up). Within each int value, we will adopt the convention that bits are ordered from least significant to most significant. We will also adopt the convention that the first 32 bits of our vector are in x[0], the next 32 bits are in x[1], and so forth. Here's the memory layout we are using (showing the bit index in our bit vector corresponding to each bit of memory):
+----+----+-------+----+----+----+
x[0]: | 31 | 30 | . . . | 02 | 01 | 00 |
+----+----+-------+----+----+----+
x[1]: | 63 | 62 | . . . | 34 | 33 | 32 |
+----+----+-------+----+----+----+
etc.
Our first step is to allocate the necessary storage capacity:
x = new int[(N + BITSPERWORD - 1) >> SHIFT]
(We could make provision for dynamically expanding this storage, but that would just add complexity to the explanation.)
Now suppose we want to access bit i (either to set it, clear it, or just to know its current value). We need to first figure out which element of x to use. Since there are 32 bits per int value, this is easy:
subscript for x = i / 32
Making use of the enum constants, the x element we want is:
x[i >> SHIFT]
(Think of this as a 32-bit-wide window into our N-bit vector.) Now we have to find the specific bit corresponding to i. Looking at the memory layout, it's not hard to figure out that the first (rightmost) bit in the window corresponds to bit index 32 * (i >> SHIFT). (The window starts afteri >> SHIFT slots in x, and each slot has 32 bits.) Since that's the first bit in the window (position 0), then the bit we're interested in is is at position
i - (32 * (i >> SHIFT))
in the windows. With a little experimenting, you can convince yourself that this expression is always equal to i % 32 (actually, that's one definition of the mod operator) which, in turn, is always equal to i & MASK. Since this last expression is the fastest way to calculate what we want, that's what we'll use.
From here, the rest is pretty simple. We start with a single bit in the least-significant position of the window (that is, the constant 1), and move it to the left by i & MASK bits to get it to the position in the window corresponding to bit i in the bit vector. This is where the expression
1 << (i & MASK)
comes from. With the bit now moved to where we want it, we can use this as a mask to set, clear, or query the value of the bit at that position in x[i>>SHIFT] and we know that we're actually setting, clearing, or querying the value of bit i in our bit vector.
If you store your bits in an array of n words you can imagine them to be layed out as a matrix with n rows and 32 columns (BITSPERWORD):
3 0
1 0
0 xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx
1 xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx
2 xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx
....
n xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx
To get the k-th bit you divide k by 32. The (integer) result will give you the row (word) the bit is in, the reminder will give you which bit is within the word.
Dividing by 2^p can be done simply by shifting p postions to the right. The reminder can be obtained by getting the p rightmost bits (i.e the bitwise AND with (2^p - 1)).
In C terms:
#define div32(k) ((k) >> 5)
#define mod32(k) ((k) & 31)
#define word_the_bit_is_in(k) div32(k)
#define bit_within_word(k) mod32(k)
Hope it helps.
From "Signed Types" on Encoding - Protocol Buffers - Google Code:
ZigZag encoding maps signed integers to unsigned integers so that numbers with a small absolute value (for instance, -1) have a small varint encoded value too. It does this in a way that "zig-zags" back and forth through the positive and negative integers, so that -1 is encoded as 1, 1 is encoded as 2, -2 is encoded as 3, and so on, as you can see in the following table:
Signed Original Encoded As
0 0
-1 1
1 2
-2 3
2147483647 4294967294
-2147483648 4294967295
In other words, each value n is encoded using
(n << 1) ^ (n >> 31)
for sint32s, or
(n << 1) ^ (n >> 63)
for the 64-bit version.
How does (n << 1) ^ (n >> 31) equal whats in the table? I understand that would work for positives, but how does that work for say, -1? Wouldn't -1 be 1111 1111, and (n << 1) be 1111 1110? (Is bit-shifting on negatives well formed in any language?)
Nonetheless, using the fomula and doing (-1 << 1) ^ (-1 >> 31), assuming a 32-bit int, I get 1111 1111, which is 4 billion, whereas the table thinks I should have 1.
Shifting a negative signed integer to the right copies the sign bit, so that
(-1 >> 31) == -1
Then,
(-1 << 1) ^ (-1 >> 31) = -2 ^ -1
= 1
This might be easier to visualise in binary (8 bit here):
(-1 << 1) ^ (-1 >> 7) = 11111110 ^ 11111111
= 00000001
Another way to think about zig zag mapping is that it is a slight twist on a sign and magnitude representation.
In zig zag mapping, the least significant bit (lsb) of the mapping indicates the sign of the value: if it's 0, then the original value is non-negative, if it's 1, then the original value is negative.
Non-negative values are simply left shifted one bit to make room for the sign bit in the lsb.
For negative values, you could do the same one bit left shift for the absolute value (magnitude) of the number and simply have the lsb indicate the sign. For example, -1 could map to 0x03 or 0b00000011, where the lsb indicates that it is negative and the magnitude of 1 is left shifted by 1 bit.
The ugly thing about this sign and magnitude representation is "negative zero," mapped as 0x01 or 0b00000001. This variant of zero "uses up" one of our values and shifts the range of integers we can represent by one. We probably want to special case map negative zero to -2^63, so that we can represent the full 64b 2's complement range of [-2^63, 2^63). That means we've used one of our valuable single byte encodings to represent a value that will very, very, very rarely be used in an encoding optimized for small magnitude numbers and we've introduced a special case, which is bad.
This is where zig zag's twist on this sign and magnitude representation happens. The sign bit is still in the lsb, but for negative numbers, we subtract one from the magnitude rather than special casing negative zero. Now, -1 maps to 0x01 and -2^63 has a non-special case representation too (i.e. - magnitude 2^63 - 1, left shifted one bit, with lsb / sign bit set, which is all bits set to 1s).
So, another way to think about zig zag encoding is that it is a smarter sign and magnitude representation: the magnitude is left shifted one bit, the sign bit is stored in the lsb, and 1 is subtracted from the magnitude of negative numbers.
It is faster to implement these transformations using the unconditional bit-wise operators that you posted rather than explicitly testing the sign, special case manipulating negative values (e.g. - negate and subtract 1, or bitwise not), shifting the magnitude, and then explicitly setting the lsb sign bit. However, they are equivalent in effect and this more explicit sign and magnitude series of steps might be easier to understand what and why we are doing these things.
I will warn you though that bit shifting signed values in C / C++ is not portable and should be avoided. Left shifting a negative value has undefined behavior and right shifting a negative value has implementation defined behavior. Even left shifting a positive integer can have undefined behavior (e.g. - if you shift into the sign bit it might cause a trap or something worse). So, in general, don't bit shift signed types in C / C++. "Just say no."
Cast first to the unsigned version of the type to have safe, well-defined results according to the standards. This does mean that you then won't have arithmetic shift of negative values (i.e. - dragging the sign bit to the right) -- only logical shift, so you need to adjust the logic to account for that.
Here are the safe and portable versions of the zig zag mappings for 2's complement 64b integers in C:
#include <stdint.h>
uint64_t zz_map( int64_t x )
{
return ( ( uint64_t ) x << 1 ) ^ -( ( uint64_t ) x >> 63 );
}
int64_t zz_unmap( uint64_t y )
{
return ( int64_t ) ( ( y >> 1 ) ^ -( y & 0x1 ) );
}
Note the arithmetic negation of the sign bit in the right hand term of the XORs. That yields either 0 for non-negatives or all 1's for negatives -- just like arithmetic shift of the sign bit from msb to lsb would do. The XOR then effectively "undoes" / "redoes" the 2's complementation minus 1 (i.e. - 1's complementation or logical negation) for negative values without any conditional logic or further math.
Let me add my two cents to the discussion. As other answers noted, the zig-zag encoding can be thought as a sign-magnitude twist. This fact can be used to implement conversion functions which work for arbitrary-sized integers.
For example, I use the following code in one on my Python projects:
def zigzag(x: int) -> int:
return x << 1 if x >= 0 else (-x - 1) << 1 | 1
def zagzig(x: int) -> int:
assert x >= 0
sign = x & 1
return -(x >> 1) - 1 if sign else x >> 1
These functions work despite Python's int has no fixed bitwidth; instead, it extends dynamically. However, this approach may be inefficient in compiled languages since it requires conditional branching.