I am getting "error A2076: jump destination must specify a label" but it points to a line of code that executes a MACRO with nine parameters & no jump - debugging

I am unable to identify the root cause of the error in order to fix it and so I'm looking for help with how to track down and fix the problem. I'm using VisualStudio 2022 Community as my IDE. The same line of code is also causing two other errors, i.e., error A2006: undefined symbol : 1 and error A2077: instruction does not allow NEAR indirect addressing. The specific line of code identified by the assembler as erroneous is CheckItemForDuplicates TD17,TD27,TD37,TD47,TD57,TD67,TD77,TD87,TD97. This line of code is just one of nine similar lines of code in the procedure. The procedure includes the following code:
CheckColumnsForDuplicates proc
invoke CopyCurrentState ; For possible UNDO
RecordActionSteps ActionCode2 ;, CkColDUP
inc StepCounter
;---------------------------------------------------------------------------------
CheckItemForDuplicates TD11,TD21,TD31,TD41,TD51,TD61,TD71,TD81,TD91
CheckItemForDuplicates TD12,TD22,TD32,TD42,TD52,TD62,TD72,TD82,TD92
CheckItemForDuplicates TD13,TD23,TD33,TD43,TD53,TD63,TD73,TD83,TD93
CheckItemForDuplicates TD14,TD24,TD34,TD44,TD54,TD64,TD74,TD84,TD94
CheckItemForDuplicates TD15,TD25,TD35,TD45,TD55,TD65,TD75,TD85,TD95
CheckItemForDuplicates TD16,TD26,TD36,TD46,TD56,TD66,TD76,TD86,TD96
CheckItemForDuplicates TD17,TD27,TD37,TD47,TD57,TD67,TD77,TD87,TD97
CheckItemForDuplicates TD18,TD28,TD38,TD48,TD58,TD68,TD78,TD88,TD98
CheckItemForDuplicates TD19,TD29,TD39,TD49,TD59,TD69,TD79,TD89,TD99
;---------------------------------------------------------------------------------
RET
CheckColumnsForDuplicates endp
There are two other similar procedures named "CheckRowsForDuplicates" and "CheckBoxesForDuplicates" both of which execute the "CheckItemForDuplicates" MACRO nine times, each time with a different set of nine parameters. Consequently, it is not clear to me why this single line of code is identified as the cause of these errors and the other 26 similar lines of code are not also identified as the source of the same errors.
I've looked at the MACRO that is called by these three procedures to find any jumps or similar branching logic that might be the cause of the errors. As background, the MACRO is a part of a larger program I have been working on as a means to learn and apply assembly language with Win32 API commands. The program is intended to assist in solving Sudoku puzzles. The MACRO contains two "FOR" loops. The first "FOR" loop creates a bit MASK of Sudoku #s found in the 9 Sudoku cells that make up a row,column, or box in the Sudoku matrix and the 2nd "FOR" loop applies the inverse of the MASK to the remaining (unsolved) cells to identify DUPLICATES of the Sudoku #s found in the first "FOR" loop. In the first "FOR" loop, there is one "TEST" instruction with a corresponding "jz" instruction that includes s label "NextCell", which is LOCAL to the "FOR" loop. In the 2nd "FOR" loop there is logic to apply the MASK which I originally setup to use offsets to copy data, but changed to direct copies (i.e., mov) in an effort to elminate the errors but the same errors still continued to occur. I also searched the code for a "1" that somehow was being interpreted as an "undefined" symbol but found nothing that looked suspicious. I tried disabling sections of code by "commenting them out" but I was unable to narrow down the source of the error to any specific code. The MACRO I reviewed is:
CheckItemForDuplicates MACRO Cell1,Cell2,Cell3,Cell4,Cell5,Cell6,Cell7,Cell8,Cell9
; ***************************************************************************************************************************************************************************
; NOTES: An ITEM is either a Sudoku BOX, COLUMN or ROW..
; ***************************************************************************************************************************************************************************
mov MASKITEM,0
;******************************************************************************************
FOR CellX, <Cell1,Cell2,Cell3,Cell4,Cell5,Cell6,Cell7,Cell8,Cell9>
Local CellX, NextCell
;******************************************************************************************
;This loop CREATES a MASK of Given, Solved and/or Guessed Sudoku #s found in the 9 MatrixCells of the item under review (i.e., row, column, or box)
pushad ; Preparation steps: Save register values
mov ax, CellX ; Copy CellX (e.g.,TD11) to working memory
mov bx,ax ; keep spare copy of CellX in register bx to test Input/Solved Flags
TEST bx,MASK InputDataFlag + MASK SolvedFlag ; Check to determine if data is Input or Solved
jz NextCell ; If not Input or Solved Data, restore registers & process next matrix cell
; Otherwise, data is Input/Solved Data. So, get value.
AND ax, MASK DATABITS ; ... isolate value in the SPARE COPY of CellX previously copied into
; register ax in preparation steps
; -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
FOR N, <1,2,3,4,5,6,7,8,9>
LOCAL N
.IF ax==N
OR MASKITEM,MASK #CatStr(<Possibility>,<N>) ; Incorporate MASKs for all 9 cells of Item under review
.ENDIF
ENDM ; End of For N loop
; -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
NextCell:
popad
;******************************************************************************************
; If CellX value equals N, set MASK for ITEM to N
; Set Cell-1 MASK for ITEM-1 as described above. This MASK will incorporate
; ... ALL DUPLICATE POSSIBLITIES IDENTIFIED for the ITEM under review (i.e., Row,Col,Box)
;******************************************************************************************
ENDM ; End of For CellX CREATE MASK loop
;******************************************************************************************
; APPLY MASK
;******************************************************************************************
FOR CellX, <Cell1,Cell2,Cell3,Cell4,Cell5,Cell6,Cell7,Cell8,Cell9>
LOCAL CellX
; The combined MASK for the ITEM is applied to each of the 9 cells that the ITEM includes.
pushad
mov ax,CellX
mov bx, MASKITEM
NOT bx
AND ax,bx
mov CellX,ax
; mov ebx, offset CellX
; mov eax,[ebx]
; mov edx,offset MASKITEM
; mov ecx,[edx]
; NOT ecx
; AND eax,ecx
; mov CellX,ax ; ******* NOTE: CellX is NOT SOLVED until processed by ConfirmSudokuNumberFound MACRO *********
popad
ENDM ;End of For CellX Apply Mask loop
ENDM ;End of CheckItemForDuplicates macro
In my limited experience debugging assembly errors, I usually find a misspelling, an extra random character, or a missing character (e.g., a period, comma, semicolon, etc.) but this one has me baffled. I could use an expert's help in determining next steps in how to go about identifying and fixing the root cause of what to me is a mysterious error.

Related

Visual Studio (MASM) assembly - why does code in labels automatically execute, even if label not called

So I have this code and both labels are being executed, even though I was under the impression they would only execute if called with a jmp instruction
In other words, the output of this code is 15 - i.e. 5 + 7 + 3, while I thought it should be 5, since the labels aren't being called via the jmp instruction
.data
.code
TestNew proc
mov rax, 5
lbl1:
add rax, 7
lbl2:
add rax, 3
ret
TestNew endp
end
It seems the jmp instruction is working, since if I call it e.g. here, I get an infinite loop:
.data
.code
TestNew proc
mov rax, 5
lbl1:
add rax, 7
lbl2:
add rax, 3
jmp lbl1 ;causes infinite loop...so at least jmp is working
ret
TestNew endp
end
If anyone could give me any tips on how to get this working, I'd appreciate it.
Thanks
even though I was under the impression they would only execute if called with a jmp instruction
Sorry, your impression is mistaken. Labels are not analogous to functions or subroutines in a higher-level language. They are just, well, labels: they give a human-readable name to a particular address in memory, but do not have any effect on what is actually in that memory.
Labels can be used to mark the beginning of a subroutine or block of code, so that you can call or jump to it by name from elsewhere. But whatever code immediately precedes your subroutine will by default fall through into it, so you normally have to put a jump or return or some similar instruction there if fall-through is not what you want. Likewise, in order to get your subroutine to return, you code an actual ret instruction; merely inserting a label to start the next subroutine would again result in fall-through.
Execution in assembly always flows from one instruction to the next one that follows it in memory, unless the instruction is a jump or call or some other whose purpose is to redirect execution flow. Putting labels between two instructions does not alter that principle in any way.
So yes, your code is always going to execute the mov and then the two adds, since you have not coded any jump instruction that would alter this.

x86 assembler pushf causes program to exit

I think my real problem is I don't completely understand the stack frame mechanism so I am looking to understand why the following code causes the program execution to resume at the end of the application.
This code is called from a C function which is several call levels deep and the pushf causes program execution to revert back several levels through the stack and completely exit the program.
Since my work around works as expected I would like to know why using the pushf instruction appears to be (I assume) corrupting the stack.
In the routines I usually setup and clean up the stack with :
sub rsp, 28h
...
add rsp, 28h
However I noticed that this is only necessary when the assembly code calls a C function.
So I tried removing this from both routines but it made no difference. SaveFlagsCmb is an assembly function but could easily be a macro.
The code represents an emulated 6809 CPU Rora (Rotate Right Register A).
PUBLIC Rora_I_A ; Op 46 - Rotate Right through Carry A reg
Rora_I_A PROC
sub rsp, 28h
; Restore Flags
mov cx, word ptr [x86flags]
push cx
popf
; Rotate Right the byte and save the FLAGS
rcr byte ptr [q_s+AREG], 1
; rcr only affects Carry. Save the Carry first in dx then
; add 0 to result to trigger Zero and Sign/Neg flags
pushf ; this causes jump to end of program ????
pop dx ; this line never reached
and dx, CF ; Save only Carry Flag
add [q_s+AREG], 0 ; trigger NZ flags
mov rcx, NF+ZF+CF ; Flag Mask NZ
Call SaveFlagsCmb ; NZ from the add and CF saved in dx
add rsp, 28h
ret
Rora_I_A ENDP
However if I use this code it works as expected:
PUBLIC Rora_I_A ; Op 46 - Rotate Right through Carry A reg
Rora_I_A PROC
; sub rsp, 28h ; works with or without this!!!
; Restore Flags
mov ah, byte ptr [x86flags+LSB]
sahf
; Rotate Right the byte and save the FLAGS
rcr byte ptr [q_s+AREG], 1
; rcr only affects Carry. Save the Carry first in dx then
; add 0 to result to trigger Zero and Sign/Neg flags
lahf
mov dl, ah
and dx, CF ; Save only Carry Flag
add [q_s+AREG], 0 ; trigger NZ flags
mov rcx, NF+ZF+CF ; Flag Mask NZ
Call SaveFlagsCmb ; NZ from the add and CF saved in dx
; add rsp, 28h ; works with or without this!!!
ret
Rora_I_A ENDP
Your reported behaviour doesn't really make sense. Mostly this answer is just providing some background not a real answer, and a suggestion not to use pushf/popf in the first place for performance reasons.
Make sure your debugging tools work properly and aren't being fooled by something into falsely showing a "jump" to somewhere. (And jump where exactly?)
There's little reason to mess around with 16-bit operand size, but that's probably not your problem.
In Visual Studio / MASM, apparently (according to OP's comment) pushf assembles as pushfw, 66 9C which pushes 2 bytes. Presumably popf also assembles as popfw, only popping 2 bytes into FLAGS instead of the normal 8 bytes into RFLAGS. Other assemblers are different.1
So your code should work. Unless you're accidentally setting some other bit in FLAGS that breaks execution? There are bits in EFLAGS/RFLAGS other than condition codes, including the single-step TF Trap Flag: debug exception after every instruction.
We know you're in 64-bit mode, not 32-bit compat mode, otherwise rsp wouldn't be a valid register. And running 64-bit machine code in 32-bit mode wouldn't explain your observations either.
I'm not sure how that would explain pushf being a jump to anywhere. pushf itself can't fault or jump, and if popf set TF then the instruction after popf would have caused a debug exception.
Are you sure you're assembling 64-bit machine code and running it in 64-bit mode? The only thing that would be different if a CPU decoded your code in 32-bit mode should be the REX prefix on sub rsp, 28h, and the RIP-relative addressing mode on [x86flags] decoding as absolute (which would presumably fault). So I don't think that could explain what you're seeing.
Are you sure you're single-stepping by instructions (not source lines or C statements) with a debugger to test this?
Use a debugger to look at the machine code as you single-step. This seem really weird.
Anyway, it seems like a very low-performance idea to use pushf / popf at all, and also to be using 16-bit operand-size creating false dependencies.
e.g. you can set x86 CF with movzx ecx, word ptr [x86flags] / bt ecx, CF.
You can capture the output CF with setc cl
Also, if you're going to do multiple things to the byte from the guest memory, load it into an x86 register. A memory-destination RCR and a memory-destination ADD are unnecessarily slow vs. load / rcr / ... / test reg,reg / store.
LAHF/SAHF may be useful, but you can also do without them too for many cases. popf is quite slow (https://agner.org/optimize/) and it forces a round trip through memory. However, there is one condition-code outside the low 8 in x86 FLAGS: OF (signed overflow). asm-source compatibility with 8080 is still hurting x86 in 2019 :(
You can restore OF from a 0/1 integer with add al, 127: if AL was originally 1, it will overflow to 0x80, otherwise it won't. You can then restore the rest of the condition codes with SAHF. You can extract OF with seto al. Or you can just use pushf/popf.
; sub rsp, 28h ; works with or without this!!!
Yes of course. You have a leaf function that doesn't use any stack space.
You only need to reserve another 40 bytes (align the stack + 32 bytes of shadow space) if you were going to make another function call from this function.
Footnote 1: pushf/popf in other assemblers:
In NASM, pushf/popf default to the same width as other push/pop instructions: 8 bytes in 64-bit mode. You get the normal encoding without an operand-size prefix. (https://www.felixcloutier.com/x86/pushf:pushfd:pushfq)
Like for integer registers, both 16 and 64-bit operand-size for pushf/popf are encodeable in 64-bit mode, but 32-bit operand size isn't.
In NASM, your code would be broken because push cx / popf would push 2 bytes and pop 8, popping 6 bytes of your return address into RFLAGS.
But apparently MASM isn't like that. Probably a good idea to use explicit operand-size specifiers anyway, like pushfw and popfw if you use it at all, to make sure you get the 66 9C encoding, not just 9C pushfq.
Or better, use pushfq and pop rcx like a normal person: only write to 8 or 16-bit partial registers when you need to, and keep the stack qword-aligned. (16-byte alignment before call, 8-byte alignment always.)
I believe this is a bug in Visual Studio. I'm using 2022, so it's an issue that's been around for a while.
I don't know exactly what is triggering it, however stepping over one specific pushf in my code had the same symptoms, albeit with the code actually working.
Putting a breakpoint on the line after the pushf did break, and allowed further debugging of my app. Adding a push ax, pop ax before the pushf also seemed to fix the issue. So it must be a Visual Studio issue.
At this point I think MASM and debugging in Visual Studio has pretty much been abandoned. Any suggestions for alternatives for developing dlls on Windows would be appreciated!

LOOP is done only one time when single stepping in Turbo Debugger

The code must output 'ccb',but output only 'c', LOOP is done only one time, i have calibrated in TD, but why LOOP is done only one time?
I THINK THAT I MUST TO DECREMENT STRING_LENGTH, SO I WROTE
DEC STRING_LENGTH
BUT IT NOT WORK, SO I WROTE LIKE THAT
MOV SP,STRING_LENGTH
DEC SP
MOV STRING_LENGTH,SP
I KNOW WHAT ARE YOU THINKING RIGHT NOW, THAT IS SO INCORRECT, YOU ARE RIGHT)))
I CAN USE C++, BUT I WANT TO DO IT ONLY IN ASSEMBLY,
DOSSEG
.MODEL SMALL
.STACK 200H
.DATA
STRING DB 'cScbd$'
STRING_LENGTH EQU $-STRING
STRING1 DB STRING_LENGTH DUP (?) , '$'
.CODE
MOV AX,#DATA
MOV DS,AX
XOR SI,SI
XOR DI,DI
MOV CX,STRING_LENGTH
S:
MOV BL,STRING[DI]
AND STRING[DI],01111100B
CMP STRING[DI],01100000B
JNE L1
MOV AL,BL
MOV STRING1[SI],AL
ADD SI,2
L1:
ADD DI,2
LOOP S
MOV DL,STRING1
MOV AH,9
INT 21H
MOV AH,4CH
INT 21H
END
In Turbo Debugger (TD.EXE) the F8 "F8 step" will execute the loop completely, until the cx becomes zero (you can even create infinite loop by updating cx back to some value, preventing it from reaching the 1 -> 0 step).
To get "single-step" out of the loop instruction, use the F7 "F7 trace" - that will cause the cx to go from 6 to 5, and the code pointer will follow the jump back on the start of the loop.
About some other issues of your code:
MOV SP,STRING_LENGTH
DEC SP
MOV STRING_LENGTH,SP
sp is not general purpose register, don't use it for calculation like this. Whenever some instruction does use stack implicitly (push, pop, call, ret, ...), the values are being written and read in memory area addressed by the ss:sp register pair, so by manipulating the sp value you are modifying the current "stack".
Also in 16 bit x86 real mode all the interrupts (keyboard, timer, ...), when they occur, the current state of flag register and code address is stored into stack, before giving the control to the interrupt handler code, which usually will push additional values to the stack, so whatever is in memory on addresses below current ss:sp is not safe in 16 bit x86 real mode, and the memory content keeps "randomly" changing there by all the interrupts being executed meanwhile (the TD.EXE itself does use part of this stack memory after every single step).
For arithmetic use other registers, not sp. Once you will know enough about "stack", you will understand what kind of sp manipulation is common and why (like sub sp,40 at beginning of function which needs additional "local" memory space), and how to restore stack back into expected state.
One more thing about that:
MOV SP,STRING_LENGTH
DEC SP
MOV STRING_LENGTH,SP
The STRING_LENGTH is defined by EQU, which makes it compile time constant, and only compile time. It's not "variable" (memory allocation), contrary to the things like someLabel dw 1345, which cause the assembler to emit two bytes with values 0100_0001B, 0000_0101B (when read as 16 bit word in little-endian way, that's value 1345 encoded), and the first byte address has symbolic name someLabel, which can be used in further instructions, like dec word ptr [someLabel] to decrement that value in memory from 1345 to 1344 during runtime.
But EQU is different, it assigns the symbol STRING_LENGTH final value, like 14.
So your code can be read as:
mov sp,14 ; makes almost sense, (practically destroys stack setup)
dec sp ; still valid
mov 14,sp ; doesn't make any sense, constant can't be destination for MOV

Visual Studio only breaks on second line of assembly?

The short description:
Setting a breakpoint on the first line of my .CODE segment in an assembly program will not halt execution of the program.
The question:
What about Visual Studio's debugger would allow it to fail to create a breakpoint at the first line of a program written in assembly? Is this some oddity of the debugger, a case of breaking on a multi-byte instruction, or am I just doing something silly?
The details:
I have the following assembly program compiling and running in Visual Studio:
; Tell MASM to use the Intel 80386 instruction set.
.386
; Flat memory model, and Win 32 calling convention
.MODEL FLAT, STDCALL
; Treat labels as case-sensitive (required for windows.inc)
OPTION CaseMap:None
include windows.inc
include masm32.inc
include user32.inc
include kernel32.inc
include macros.asm
includelib masm32.lib
includelib user32.lib
includelib kernel32.lib
.DATA
BadText db "Error...", 0
GoodText db "Excellent!", 0
.CODE
main PROC
;int 3 ; <-- If uncommented, this will not break.
mov ecx, 6 ; <-- Breakpoint here will not hit.
xor eax, eax ; <-- Breakpoint here will.
_label: add eax, ecx
dec ecx
jnz _label
cmp eax, 21
jz _good
_bad: invoke StdOut, addr BadText
jmp _quit
_good: invoke StdOut, addr GoodText
_quit: invoke ExitProcess, 0
main ENDP
END main
If I try to set a breakpoint on the first line of the main function, mov ecx, 6, it is ignored, and the program executes without stopping. Only will a breakpoint be hit if I set it on the line after that, xor eax, eax, or any subsequent line.
I have even tried inserting a software breakpoint, int 3, as the first line of the function, and it is also ignored.
The first thing I notice that is odd: viewing the disassembly after hitting one of my breakpoints gives me the following:
01370FFF add byte ptr [ecx+6],bh
--- [Path]\main.asm
xor eax, eax
00841005 xor eax,eax --- <-- Breakpoint is hit here
_label: add eax, ecx
00841007 add eax,ecx
dec ecx
00841009 dec ecx
jnz _label
0084100A jne _label (841007h)
cmp eax, 21
0084100C cmp eax,15h
What's interesting here is that the xor is, in Visual Studio's eyes, the first operation in my program. Absent is the line move ecx, 6. Directly above where it thinks my source begins is the line that actually sets ecx to 6. So the actual start of my program has been mangled according to the disassembly.
If I make the first line of my program int 3, the line that appears above where my code is in the disassembly is:
00F80FFF add ah,cl
As suggested in one of the answers, I turned off ASLR, and it looks like the disassembly is a little more stable:
.CODE
main PROC
;mov ecx, 6
xor eax, eax
00401000 xor eax,eax --- <-- Breakpoint is present here, but not hit.
_label: add eax, ecx
00401002 add eax,ecx --- <-- Breakpoint here is hit.
dec ecx
00401004 dec ecx
The complete program is visible in the disassembly, but the problem still perists. Despite my program starting on an expected address, and the first breakpoint being shown in the disassembly, it is still skipped. Placing an int 3 as the first line still results in the following line:
00400FFF add ah,cl
and does not stop execution, and re-mangles the view of my program in the disassembly again. The next line of my program is then at location 00401001, which I suppose makes sense because int 3 is a one-byte instruction, but why would it have disappeared in the disassembly?
Even starting the program using the 'Step Into (F11)' command does not allow me to break on the first line. In fact, with no breakpoint, starting the program with F11 does not halt execution at all.
I'm not really sure what else I can try to solve the problem, beyond what I have detailed here. This is stretching beyond my current understanding of assembly and debuggers.
01370FFF add byte ptr [ecx+6],bh
At least I can explain away one mystery. Note the address, 0x1370fff. The CODE segment never starts at an address like that, segments begin at an address that's a multiple of 0x1000. Which makes the last 3 hex digits of the start address always 0. The debugger got confuzzled and started disassembling the code at the wrong address, off by one. The actual start address is 0x1371000. The disassembly starts off poorly because there's a 0 at 0x1370fff. That's a multi-byte ADD instruction. So it displays garbage for a while until it catches up with real machine code instructions by accident.
You need to help it along and give it a command to start disassembling at the proper address. In VS that's the Address box, type "0x1371000".
Another notable quirk is the strange value of the start address. A process normally starts at address 0x400000. You have a feature called ASLR turned on, Address Space Layout Randomization. It is an anti-virus feature that makes programs start at an unpredictable start address. Nice feature but it doesn't exactly help debugging programs. It isn't clear how you built this code but you need the /DYNAMICBASE:NO linker option to turn it off.
Another important quirk of debuggers you need to keep in mind here is the way they set breakpoints. They do so by patching the code, replacing the start byte of an instruction with an int 3 instruction. When the breakpoint hits, it quickly replaces the byte with the original machine code instruction byte. So you never see this. This goes wrong if you pick the wrong address to set the breakpoint, like in the middle of a multi-byte instruction. It now no longer breaks the code, the altered byte messes up the original instruction. You can easily fall into this trap when you started with a bad disassembly.
Well, do this the Right Way. Start debugging with the debugger's STEP command instead.
I have discovered what the root of the problem is, but I haven't a clue why it is so.
After creating another MASM project, I noticed that the new one would break on the first line of the program, and the disassembly did not appear to be mangled or altered. So, I compared its properties to my original project (for the Debug configuration). The only difference I found was that my original project had Incremental Linking disabled. Specifically, it added /INCREMENTAL:NO to the linker command line.
Removing this option from the command line (thereby enabling Incremental Linking) resulted in the program behaving as expected during debugging; my code shown in the disassembly window remained unaltered, I could hit a breakpoint on the first line of the main procedure, and an int 3 instruction would also execute properly as the first line.
If you press F+11 (step into) instead of Start Debugging the debugger will stop on the first line.
It is possible there is some messed up breakpoint setting. Delete any *.suo files in your project directory to reset all breakpoints.
Note that your project will have a secret headers and stuff in it if it has a main function. To set a breakpoint at the real entry point use: Debug + New Breakpoint + Break at Function -> wWinMainCRTStartup for a windows program or mainCRTStartup or wmainCRTStartup for a console program.

How can I view what is happening in the lower parts of the EAX register in VS2008?

I am doing some assembly homework and thought the best way to get my head around what is going on is to watch what happens in the registers as the program runs. In Visual Studio You can view the registers but I am doing an operation that only changes things in the lower 8-bits of one of my registers so im not sure what I should be looking at. Can anyone help me out?
Here's the question and the code I'm running:
What will be the hexadecimal value of the destination operand after each of the following instructions execute in sequence?
TITLE MASM Template (main.asm)
INCLUDE Irvine32.inc
.data var1 SBYTE -4, -2, 3, 1
.code main PROC
call Clrscr
mov al, var1 mov ah, [var1+3]
exit main ENDP
END main
Im pretty sure the answer is -4 after the first statement and 1 after the second statement but I want to see it in the registers.
and the register window i have to look as in VS:
The ah and al registers are just aliases for the lower two bytes of eax, and so you can just monitor the eax entry in the register window. In your example, ah is 0x36 and al is 0x65. You might also need mov al, [var1] to get the value at that address, but I am not sure about that.

Resources