Project reactor - react to timeout happened downstream - spring

Project Reactor has a variety of timeout() operators.
The very basic implementation raises TimeoutException in case no item arrives within the given Duration. The exception is propagated downstream , and to upstream it sends cancel signal.
Basically my question is: is it possible to somehow react (and do something) specifically to timeout that happened downstream, not just to cancelation that sent after timeout happened?
My question is based on the requirements of my real business case and also I'm wondering if there is a straight solution.
I'll simplify my code for better understanding what I want to achieve.
Let's say I have the following reactive pipeline:
Flux.fromIterable(List.of(firstClient, secondClient))
.concatMap(Client::callApi) // making API calls sequentially
.collectList() // collecting results of API calls for further processing
.timeout(Duration.ofMillis(3000)) // the entire process should not take more than duration specified
.subscribe();
I have multiple clients for making API calls. The business requirement is to call them sequantilly, so I call them with concatMap(). Then I should collect all the results and the entire process should not take more than some Duration
The Client interface:
interface Client {
Mono<Result> callApi();
}
And the implementations:
Client firstClient = () ->
Mono.delay(Duration.ofMillis(2000L)) // simulating delay of first api call
.map(__ -> new Result())
// !!! Pseudo-operator just to demonstrate what I want to achieve
.doOnTimeoutDownstream(() ->
log.info("First API call canceled due to downstream timeout!")
);
Client secondClient = () ->
Mono.delay(Duration.ofMillis(1500L)) // simulating delay of second api call
.map(__ -> new Result())
// !!! Pseudo-operator just to demonstrate what I want to achieve
.doOnTimeoutDownstream(() ->
log.info("Second API call canceled due to downstream timeout!")
);
So, if I have not received and collected all the results during the amount of time specified, I need to know which API call was actually canceled due to downstream timeout and have some callback for this "event".
I know I could put doOnCancel() callback to every client call (instead of pseudo-operator I demonstrated) and it would work, but this callback reacts to cancelation, which may happen due to any error.
Of course, with proper exception handling (onErrorResume(), for example) it would work as I expect, however, I'm interesting if there is some straight way to somehow react specifically to timeout in this case.

Related

FireAndForget call to WebApi from Azure Function

I want to be able to call an HTTP endpoint (that I own) from an Azure Function at the end of the Azure Function request.
I do not need to know the result of the request
If there is a problem in the HTTP endpoint that is called I will log it there
I do not want to hold up the return to the client calling the initial Azure Function
Offloading the call of the secondary WebApi onto a background job queue is considered overkill for this requirement
Do I simply call HttpClient.PutAsync without an await?
I realise that the dependencies I have used up until the point that the call is made may well not be available when the call returns. Is there a safe way to check if they are?
My answer may cause some controversy but, you can always start a background task and execute it that way.
For anyone reading this answer, this is far from recommended. The OP has been very clear that they don't care about exceptions or understanding what sort of result the request is returning ...
Task.Run(async () =>
{
using (var httpClient = new HttpClient())
{
await httpClient.PutAsync(...);
}
});
If you want to ensure that the call has fired, it may be worth waiting for a second or two after the call is made to ensure it's actually on it's way.
await Task.Delay(1000);
If you're worried about dependencies in the call, be sure to construct your payload (i.e. serialise it, etc.) external to the Task.Run, basically, minimise any work the background task does.

How do I use Heartbeat with a Callback Return Step Function in my Lambda Function?

My Lambda function is required to send a token back to the step function for it to continue, as it is a task within the state machine.
Looking at my try/catch block of the lambda function, I am contemplating:
The order of SendTaskHeartbeatCommand and SendTaskSuccessCommand
The required parameters of SendTaskHeartbeatCommand
Whether I should add the SendTaskHeartbeatCommand to the catch block, and then if yes, which order they should go in.
Current code:
try {
const magentoCallResponse = await axios(requestObject);
await stepFunctionClient.send(new SendTaskHeartbeatCommand(taskToken));
await stepFunctionClient.send(new SendTaskSuccessCommand({output: JSON.stringify(magentoCallResponse.data), taskToken}));
return magentoCallResponse.data;
} catch (err: any) {
console.log("ERROR", err);
await stepFunctionClient.send(new SendTaskFailureCommand({error: JSON.stringify("Error Sending Data into Magento"), taskToken}));
return false;
}
I have read the documentation for AWS SDK V3 for SendTaskHeartbeatCommand and am confused with the required input.
The SendTaskHeartbeat and SendTaskSuccess API actions serve different purposes.
When your task completes, you call SendTaskSucces to report this back to Step Functions and to provide the results from the Task that your workflow can then process. You do not need to call SendTaskHeartbeat before SendTaskSuccess and the usage you have in the code above seems unnecessary.
SendTaskHeartbeat is optional and you use it when you've set "HeartbeatSeconds" on your Task. When you do this, you then need your worker (i.e. the Lambda function in this case) to send back regular heartbeats while it is processing work. I'd expect that to be running asynchronously while your code above was running the first line in the try block. The reason for having heartbeats is that you can set a longer TimeoutSeconds (or dynamically using TimeoutSecondsPath) than HeartbeatSeconds, therefore failing / retrying fast when the worker dies (Heartbeat timeout) while you still allow your tasks to take longer to complete.
That said, it's not clear why you are using .waitForTaskToken with Lambda. Usually, you can just use the default Request Response integration pattern with Lambda. This uses the synchronous invoke mode for Lambda and will return the response back to you without you needing to integrate back with Step Functions in your Lambda code. Possibly you are reading these off of an SQS queue for concurrency control or something. But if not, just use Request Response.

Rxjs - How to retry an errored observable while informing UI of the error

Problem
Suppose there is a Http request observable that errored, we can just retry it. But I also want the UI to inform the user that this resource failed to load. What is the best architecture?
Intended Behavior for the Target Observable
Retry-able.
Long-running. Doesn't complete or error.
Shared. Does not generate unnecessary requests when multiple subscriber.
Load on need. Does not generate unnecessary requests when not subscribed.
Inform UI of the errors.
(3 and 4 can be achieved by shareReplay({bufferSize: 1, refCount: true}))
My Attempts
I think it's best to pass an error message to the downstream observer while keeping retrying the source. It causes minimum changes to the architecture. But I didn't see a way I can do it with Rxjs, because
retry() always intercepts the error. If you materialze the error, then retry() won't retry. If not, then no error will propagate to the downstream.
catchError() without rethrowing will always complete the stream.
Although let the UI observer tap(,,onError) and retry() can satisfy this need, but I think it is dangerous to let the UI take this responsibility. And multiple UI observer means a LOT of duplicated retries.
Well, I seem to have accidentally find the answer while browsing through the documentations.
It starts with the usage of the second parameter of the catchError. According to the documentation, retry is implemented by catchError. And we can express more logic with the lower-level catchError.
So it's just
catchError((err, caught) => {
return timer(RETRY_DELAY_TIME).pipe(
mergeMap(() => caught)
startWith(err)
);
})
It retries the observable, meanwhile sending error messages to the downstream observers. So the downstream is aware of the connection error, and can expect to receive retried values.
It sounds like you're looking for something akin to an NgRx side effect. You can encase it all in an outer Observable, piping the error handler to the inner Observable (your HTTP call), something like this:
const myObs$ = fromEvent('place event that triggers call here').pipe(
// just one example, you can trigger this as you please
switchMap(() => this.myHttpService.getResource().pipe(
catchError(err => handleAndRethrowError()),
retry(3)
),
shareReplay()
);
This way, if the request throws an error, it is retried 3 times (with error handling in the catchError block, and even if it fully errors out, the outer Observable is still alive. Does that look like it makes sense?

Running a Mono in background while returning a response when using Spring Webflux

This questions is related to Return immediately in spring web flux but I don't think it's the same (at least the answer there is not satisfactory for me).
I have a function returning a Mono that when invoked starts a long-running job. This function is invoked when a call is made to a Spring Webflux HTTP API. Here's an example:
#PutMapping("/{jobId}")
fun startNewJob(#PathVariable("jobId") jobId: String,
request: ServerHttpRequest): Mono<ResponseEntity<Unit>> {
val longRunningJob : Mono<Job> = startNewJob(jobId)
longRunningJob.map { job ->
val jobUri = generateJobUri(request, job.id)
ResponseEntity.created(jobURI).build<Unit>()
}
}
The problem with the code above is that "201 Created" is created after the long running job is completed. I want to kick-off the longRunningJob in the background and return "201 Created" immediately.
I could perhaps do something like this:
#PutMapping("/{jobId}")
fun startNewJob(#PathVariable("jobId") jobId: String,
request: ServerHttpRequest): Mono<ResponseEntity<Unit>> {
startNewJob(jobId)
.subscribeOn(Schedulers.newSingle("thread"))
.subscribe()
val jobUri = generateJobUri(request, job.id)
val response = ResponseEntity.created(jobURI).build<Unit>()
Mono.just(response)
}
But it doesn't seem very idiomatic to me to have to call subscribe() manually (e.g. intellij is complaining that I call subscribe() in non-blocking scope). Isn't there a better way to compose the two "streams" without using an explicit subscribe? If so how do I modify the startNewJob function above to achieve this?
AFAIK, using one of the subscribe methods is the only way to really start a job in the background with its own lifecycle (not tied to the returned publisher).
If you were to use one of the operators to combine the job publisher and the response publisher (e.g. zip or merge), then the lifecycle of the job publisher would be tied to the response publisher, which is not what you want for a background job.
One thing you might want to consider is kicking off the background job within the response publisher stream, rather than directly in the method body. e.g. via doOnSubscibe or from an operator upstream of the response.
This would tie the start of the background job to the onSubscribe events of the response publisher, but still allow it to complete in the background.
Also note, that if you want to be able to cancel the background job (e.g. maybe during application shutdown), you'll need to save the Disposable returned from subscribe so you can later call dispose on it. This might be better done from some type of BackgroundJobManager that could keep track of all the jobs running.
private static final Scheduler backgroundTaskScheduler = Schedulers.newParallel("backgroundTaskScheduler", 2);
backgroundTaskScheduler.schedule(() -> doBackgroundJob());

Angular.JS multiple $http post: canceling if one fails

I am new to angular and want to use it to send data to my app's backend. In several occasions, I have to make several http post calls that should either all succeed or all fail. This is the scenario that's causing me a headache: given two http post calls, what if one call succeeds, but the other fails? This will lead to inconsistencies in the database. I want to know if there's a way to cancel the succeeding calls if at least one call has failed. Thanks!
Without knowing more about your specific situation I would urge you to use the promise error handling if you are not already doing so. There's only one situation that I know you can cancel a promise that has been sent is by using the timeout option in the $http(look at this SO post), but you can definitely prevent future requests. What happens when you make a $http call is that it returns a promise object(look at $q here). What this does is it returns two methods that you can chain on your $http request called success and failure so it looks like $http.success({...stuff...}).error({...more stuff..}). So if you do have error handling in each of these scenarios and you get a .error, dont make the next call.
You can cancel the next requests in the chain, but the previous ones have already been sent. You need to provide the necessary backend functionality to reverse them.
If every step is dependent on the other and causes changes in your database, it might be better to do the whole process in the backend, triggered by a single "POST" request. I think it is easier to model this process synchronously, and that is easier to do in the server than in the client.
However, if you must do the post requests in the client side, you could define each request step as a separate function, and chain them via then(successCallback, errorCallback) (Nice video example here: https://egghead.io/lessons/angularjs-chained-promises).
In your case, at each step you can check if the previous one failed an take action to reverse it by using the error callback of then:
var firstStep = function(initialData){
return $http.post('/some/url', data).then(function(dataFromServer){
// Do something with the data
return {
dataNeededByNextStep: processedData,
dataNeededToReverseThisStep: moreData
}
});
};
var secondStep = function(dataFromPreviousStep){
return $http.post('/some/other/url', data).then(function(dataFromServer){
// Do something with the data
return {
dataNeededByNextStep: processedData,
dataNeededToReverseThisStep: moreData
}
}, function(){
// On error
reversePreviousStep(dataFromPreviousStep.dataNeededToReverseThisStep);
});
};
var thirdFunction = function(){ ... };
...
firstFunction(initialData).then(secondFunction)
.then(thirdFunction)
...
If any of the steps in the chain fails, it's promise would fail, and next steps will not be executed.

Resources