Transaction-Management and Performance in Spring-based Java-Appllications - spring-boot

Our scenario: we receive bulks of messages from Kafka and write them to the DB after certain processing. Currently we achieve DB-write rates (in our company network) of up to 300..310 thousand records/min. But my colleagues want more (500K-600K/min.)
The affected Java application has a functional layer (a "business facade" so to speak), underneath we have classes of persistence layer, which write records grouped to individual tables into the DB as bulk inserts/updates. Whereas a bulk insert/update has been implemented as a #Transactional(REQUIRED) - i.e. default setting. Therefore, a received group of Kafka messages often means more than 1 database transaction.
I know that a DB-commit is expensive in terms of performance. I used the following settings when configuring our Spring-based data sources:
useConfigs=maxPerformance
rewriteBatchedStatements=true
prepStmtCacheSize=256
prepStmtCacheSqlLimit=2048
This did improve performance, but not to the desired benchmark of 500K-600K DB-writes/min.
Question to you, colleagues: is it OK from the standpoint of software architecture and for performance increase to annotate our "business facade" class as #Transactional(REQUIRED) and the DB layer classes as #Transactional(SUPPORTS). Thus, I want to have only one transaction per group/bulk of Kafka messages and thereby increase the DB-write rates by avoiding "excessive" commits.
Personally, I'm a bit hesitant about this change. On the one hand, I'm breaking here the boundaries of the areas of responsibility of the individual classes/layers: business logic "high-level" classes should know nothing about transaction management and the persistence layer classes should treat DB transactions as their core task. On the other hand, unwanted "cross-dependencies" arise: i.e. if an update for a table XYZ fails, then a rollback is also made for another table ABC, although everything ran smoothly there (remember all tables are getting now updates and inserts within one transaction!).
What do you think about this potential change in the transaction management? How can you fine-tune a spring-boot application to achieve higher write rates (configuration or maybe implementation changes)?

Related

Migrating an asynchronous businness flow to an event-driven system

In the effort to redesign an asynchronous flow based functional service to an event driven one, we have come up with changes on different part of this system. The service receives various statuses from external services through the API, which does computations and persists the result into the data store. The core logic is now moved from the api by introducing a queue (Kafka). Similarly the query functionality is provided through another interface (api) fronted by web UI. With this the command and query are separated. See below the diagram.
I have few questions on the approach
Is it right to have the query API (read) service & the event-complete-handler (write) operate on the same database with both dependent on the DB schema? Or is it better to have the query-api read from the replica DB?
The core-business-logic, at the end of computation, writes only to database and not to db+Kafka in a single transaction. Persisting to the database is handled by the event-complete-handler. Is this approach better?
Say in the future, if the core-business-logic needs to query the database to do the computation on every event, can it directly read from the database? Again, does it not create DB schema dependency between the services?
Is it right to have the query API (read) service & the event-complete-handler (write) operate on the same database with both dependent on the DB schema? Or is it better to have the query-api read from the replica DB?
"Right" is a loaded term. The idea behind CQRS is that the pattern can allow you to separate commands and queries so that your system can be distributed and scaled out. Typically they would be using different databases in a SOA/Microservice architecture. One service would process the command which produces an event on the service bus. Query handlers would listen to this event to change their data for querying.
For example:
A service which process the CreateWidgetCommand would produce an event onto the bus with the properties of the command.
Any query services which are interested widgets for producing their data views would subscribe to this event type.
When the event is produced, the subscribed query handlers will consume the event and update their respective databases.
When the query is invoked, their interrogate their own database.
This means you could, in theory, make the command handler as simple as throwing the event onto the bus.
The core-business-logic, at the end of computation, writes only to database and not to db+Kafka in a single transaction. Persisting to the database is handled by the event-complete-handler. Is this approach better?
No. If you question is about the transactionality of distributed systems, you cannot rely on traditional transactions, since any commands may be affecting any number of distributed data stores. The way transactionality is handled in distributed systems is often with a compensating transaction, where you code the steps to reverse the mutations made from consuming the bus messages.
Say in the future, if the core-business-logic needs to query the database to do the computation on every event, can it directly read from the database? Again, does it not create DB schema dependency between the services?
If you follow the advice in the first response, the approach here should be obvious. All distinct queries are built from their own database, which are kept "eventually consistent" by consuming events from the bus.
Typically these architectures have major complexity downsides, especially if you are concerned with consistency and transactionality.
People don't generally implement this type of architecture unless there is a specific need.
You can however design your code around CQRS and DDD so that in the future, transitioning to this type of architecture can be relatively painless.
The topic of DDD is too dense for this answer. I encourage you to do some independent learning.

Is it possible to replicate tables from multiple databases in Google Cloud?

The company that I work at uses a microservices architecture with the 'database per service' pattern. This pattern makes it harder to query based on data from multiple services, since each service has its own database. Imagine a service for managing your products and one for managing stock. You would have to somehow combine the data from both services to query for products based on stock.
I know that event sourcing and API composition are potential solutions to the problem, but I was wondering if it is possible to continuously replicate specific tables from the product and stock databases based on database transaction logs. Wouldn't this be much simpler than say implementing an event based solution like event sourcing? One service that I am working with contains a lot of domain events, which would make implementing and maintaining event-based solution rather complex.
Another reason for why I am considering to look at the problem from a different angle is that there is a lot of data. In-memory joins with say API composition will most likely be slow.
To sum it all up, I would like to know if it is possible to continuously replicate specific tables from different databases into one database.
The technologies that my company uses are primarily Spring Framework and PostgreSQL.
I would step back and ask why you have microservices (including why you have multiple databases). This is because it's quite easy to make choices that are superficially easy but which achieve that ease by negating the reason you had the microservices to begin with, and in such a situation, it may in fact be easier to just not do microservices.
For example, you might be doing microservices because you want to be able to have the team maintaining your product service be able to make changes without coordinating with the stock service or vice versa. By setting up a direct replication of a table from service A's database into service B's database, you essentially require many changes service A might want to make to that table to be coordinated with service B. It's perhaps less operationally coupled than unifying the services into a monolith, but in terms of developer velocity, you're giving up a fair amount.
Alternatively, if the rationale is to allow one service to be down (failures, maintenance, releases: doesn't matter) without taking the others down, a replication which guarantees strong consistency implies that taking service B's database down prevents service A from updating its database (because if you allowed service A to update its database in that situation, you couldn't have strong consistency).
Rather than direct replication, it might make sense to use change data capture (e.g. with Debezium) to publish a stream of changes from the transaction logs (e.g. to Kafka). The critical difference from logical replication is that the consumer can, for instance, choose to ignore updates to columns it doesn't care about: the stock service might include details like where things are stocked in a warehouse, for instance, which is data you don't need for answering a query like "show me the products in this category which are in stock". This can be a nice middle ground between going full event-sourcing and other approaches.

What's the performance penalty of long lived DB transactions interleaved with one another?

Could anyone provide an explanation or point me to a good source where it is explained the impact of long lived database transactions when there are other transactions involved?
I'm having difficulties trying to understand what is the real impact in the performance of an application of having transactions where most of the queries are reads and maybe a couple or three are writes, given the different isolation levels.
Mostly I would like to understand it in the situation where:
Neither the rows read nor the rows updated are involved in any other transaction.
The rows read are involved in another transaction but not the rows being updated and this other transaction is read only.
The rows read are involved in another transaction but not the rows being updated and this other transaction is modifying some data being read. I understand here it also affects whether the data is read before or after is being modified.
Both the rows read and the rows updated are involved in another transaction also modifying the data.
These questions come in the context of an application using micro services where all application layer services are annotated with #Transactional using JPA and PostgreSQL and, to transform the data, they need to do some network calls to other micro services within the transaction to fetch some other values.

Distributed database design style for microservice-oriented architecture

I am trying to convert one monolithic application into micro service oriented architecture style. Back end I am using spring , spring boot frameworks for development. Front-end I am using angular 2. And also using PostgreSQL as database.
Here my confusion is that, when I am designing my databases as distributed, according to functionalities it may contain 5 databases. Means I am designing according to vertical partition. Then I am thinking to implement inter-microservice communication services to achieve the entire functionality.
The other way I am thinking that to horizontally partition the current structure. So my domain is based on some educational university. So half of university go under one DB and remaining will go under another DB. And deploy services according to Two region (two for two set of university).
Currently I am decided to continue with the last mentioned approach. I am new to these types of tasks, since it referring some architecture task. Also I am beginner to this microservice and distributed database world. Would someone confirm that my approach will give solution to my issue? Can I continue with my second approach - horizontal partitioning of databases according to domain object?
Can I continue with my second approach - Horizontal partitioning of
databases according to domain object?
Temporarily yes, if based on that you are able to scale your current system to meet your needs.
Now lets think about why on the first place you want to move to Microserices as a development style.
Small Components - easier to manager
Independently Deployable - Continous Delivery
Multiple Languages
The code is organized around business capabilities
and .....
When moving to Microservices, you should not have multiple services reading directly from each other databases, which will make them tightly coupled.
One service should be completely ignorant on how the other service designed its internal structure.
Now if you want to move towards microservices and take complete advantage of that, you should have vertical partition as you say and services talk to each other.
Also while moving towards microservices your will get lots and lots of other problems. I tried compiling on how one should start on microservices on this link .
How to separate services which are reading data from same table:
Now lets first create a dummy example: we have three services Order , Shipping , Customer all are three different microservices.
Following are the ways in which multiple services require data from same table:
Service one needs to read data from other service for things like validation.
Order and shipping service might need some data from customer service to complete their operation.
Eg: While placing a order one will call Order Service API with customer id , now as Order Service might need to validate whether its a valid customer or not.
One approach Database level exposure -- not recommened -- use the same customer table -- which binds order service to customer service Impl
Another approach, Call another service to get data
Variation - 1 Call Customer service to check whether customer exists and get some customer data like name , and save this in order service
Variation - 2 do not validate while placing the order, on OrderPlaced event check in async from Customer Service and validate and update state of order if required
I recommend Call another service to get data based on the consistency you want.
In some use cases you want a single transaction between data from multiple services.
For eg: Delete a customer. you might want that all order of the customer also should get deleted.
In this case you need to deal with eventual consistency, service one will raise an event and then service 2 will react accordingly.
Now if this answers your question than ok, else specify in what kind of scenario multiple service require to call another service.
If still not solved, you could email me on puneetjindal.11#gmail.com, will answer you
Currently I am decided to continue with the last mentioned approach.
If you want horizontal scalability (scaling for increasingly large number of client connections) for your database you may be better of with a technology that was designed to work as a scalable, distributed system. Something like CockroachDB or NoSQL. Cockroachdb for example has built in data sharding and replication and allows you to grow with adding server nodes as required.
when I am designing my databases as distributed, according to functionalities it may contain 5 databases
This sounds like you had the right general idea - split by domain functionality. Here's a link to a previous answer regarding general DB design with micro services.
In the Microservices world, each Microservice owns a set of functionalities and the data manipulated by these functionalities. If a microservice needs data owned by another microservice, it cannot directly go to the database maintained/owned by the other microservice rather it would call an API exposed by the other microservice.
Now, regarding the placement of data, there are various options - you can store data owned by a microservice in a NoSQL database like MongoDB, DynamoDB, Cassandra (it really depends on the microservice's use-case) OR you can have a different table for each micro-service in a single instance of a SQL database. BUT remember, if you choose a single instance of a SQL Database with multiple tables, then there would be no joins (basically no interaction) between tables owned by different microservices.
I would suggest you start small and then think about database scaling issues when the usage of the system grows.

Commits in the absence of locks in CockroachDB

I'm trying to understand how ACID in CockroachDB works without locks, from an application programmer's point of view. Would like to use it for an accounting / ERP application.
When two users update the same database field (e.g. a general ledger account total field) at the same time what does CockroachDB do? Assuming each is updating many other non-overlapping fields at the same time as part of the respective transactions.
Will the aborted application's commit process be informed about this immediately at the time of the commit?
Do we need to take care of additional possibilities than, for example, in ACID/locking PostgreSQL when we write the database access code in our application?
Or is writing code for accessing CockroachDB for all practical purposes the same as for accessing a standard RDBMS with respect to commits and in general.
Of course, ignoring performance issues / joins, etc.
I'm trying to understand how ACID in CockroachDB works without locks, from an application programmer's point of view. Would like to use it for an accounting / ERP application.
CockroachDB does have locks, but uses different terminology. Some of the existing documentation that talks about optimistic concurrency control is currently being updated.
When two users update the same database field (e.g. a general ledger account total field) at the same time what does CockroachDB do? Assuming each is updating many other non-overlapping fields at the same time as part of the respective transactions.
One of the transactions will block waiting for the other to commit. If a deadlock between the transactions is detected, one of the two transactions involved in the deadlock will be aborted.
Will the aborted application's commit process be informed about this immediately at the time of the commit?
Yes.
Do we need to take care of additional possibilities than, for example, in ACID/locking PostgreSQL when we write the database access code in our application?
Or is writing code for accessing CockroachDB for all practical purposes the same as for accessing a standard RDBMS with respect to commits and in general.
At a high-level there is nothing additional for you to do. CockroachDB defaults to serializable isolation which can result in more transaction restarts that weaker isolation levels, but comes with the advantage that the application programmer doesn't have to worry about anomalies.

Resources