Turn off code contracts warning - visual-studio-2010

I want to turn off a code contract warning, but only for specific code lines. How do I do that?
For instance, I get:
Warning 87 CodeContracts: requires unproven: key != null
for:
return HttpContext.Current.Items[typeof(T).AssemblyQualifiedName];
which will never happen in our applications.

Well, one option would be:
string key = typeof(T).AssemblyQualifiedName;
Contract.Assume(key != null);
return HttpContext.Current.Items[key];
It's a bit ugly, but I believe it should work.

Related

Checking, if optional parameter is provided in Dart

I'm new to Dart and just learning the basics.
The Dart-Homepage shows following:
It turns out that Dart does indeed have a way to ask if an optional
parameter was provided when the method was called. Just use the
question mark parameter syntax.
Here is an example:
void alignDingleArm(num axis, [num rotations]) {
if (?rotations) {
// the parameter was really used
}
}
So I've wrote a simple testing script for learning:
import 'dart:html';
void main() {
String showLine(String string, {String printBefore : "Line: ", String printAfter}){
// check, if parameter was set manually:
if(?printBefore){
// check, if parameter was set to null
if(printBefore == null){
printBefore = "";
}
}
String line = printBefore + string + printAfter;
output.appendText(line);
output.appendHtml("<br />\n");
return line;
}
showLine("Hallo Welt!",printBefore: null);
}
The Dart-Editor already marks the questionmark as Error:
Multiple markers at this line
- Unexpected token '?'
- Conditions must have a static type of
'bool'
When running the script in Dartium, the JS-Console shows folloing Error:
Internal error: 'http://localhost:8081/main.dart': error: line 7 pos 8: unexpected token '?'
if(?printBefore){
^
I know, that it would be enough to check if printBefore is null, but I want to learn the language.
Does anyone know the reason for this problem?
How to check, if the parameter is set manually?
The feature existed at some point in Dart's development, but it was removed again because it caused more complication than it removed, without solving the problem that actually needed solving - forwarding of default parameters.
If you have a function foo([x = 42]) and you want a function to forward to it, bar([x]) => f(x);, then, since foo could actually tell if x is passed or not, you actually ended up writing bar([x]) => ?x ? foo(x) : foo();. That was worse than what you had to do without the ?: operator.
Ideas came up about having a bar([x]) => foo(?:x) or something which pased on x if it was present and not if it was absent (I no longer remember the actual proposed syntax), but that got complicated fast, fx converting named arguments to positional - bar({x,y}) => foo(?:x, ?:y); - what if y was provided and x was not. It was really just a bad solution for a self-inflicted problem.
So, the ?x feature was rolled back. All optional parameters have a default value which is passed if there is no matching argument in a call. If you want to forward an optional parameter, you need to know the default value of the function you are forwarding to.
For most function arguments, the declared default value is null, with an internal if (arg == null) arg = defaultValue; statement to fix it. That means that the null value can be forwarded directly without any confusion.
Some arguments have a non-null default value. It's mostly boolean arguments, but there are other cases too. I recommend using null for everything except named boolean parameters (because they are really meant to be named more than they are meant to be optional). At least unless there is a good reason not to - like ensuring that all subclasses will have the same default value for a method parameter (which may be a good reason, or not, and should be used judiciosuly).
If you have an optional parameter that can also accept null as a value ... consider whether it should really be optional, or if you just need a different function with one more argument. Or maybe you can introduce a different "missing argument" default value. Example:
abstract class C { foo([D something]); }
class _DMarker implements D { const _DMarker(); }
class _ActualC {
foo([D something = const _DMarker()]) {
if (something == const _DMarker()) {
// No argument passed, because user cannot create a _DMarker.
} else {
// Argument passed, may be null.
}
}
}
This is a big workaround, and hardly ever worth it. In general, just use null as default value, it's simpler.
I was trying something similar:
This does not work
widget.optionalStringParameter ? widget.optionalStringParameter : 'default string'
This works
widget.optionalStringParameter != null ? widget.optionalStringParameter : 'default string'
This also works
widget.optionalStringParameter ?? 'default string'
There was support for checking if an optional parameter was actually provider in early Dart days (pre 1.0) but was removed because it causes some troubles.

Incorrect Resharper Suggestion - "Merge Conditional Expression"

Given an oracle query which is returning a single string value, to get the value from the query I use the following two lines:
var result = cmd.ExecuteOracleScalar();
return result != null ? ((OracleString)result).Value : null;
The "!= null" in this statement is underlines with the suggestion to "Merge Conditional Expression". If I accept the suggestion it changes it to:
return ((OracleString)result).Value;
Which throws an exception because the value returned will be null for a number of executions.
Is there anyway to use the ternary operator but not have this warning?
Note that if I change the code to:
var result = cmd.ExecuteOracleScalar();
if (result == null)
return null;
return ((OracleString)result).Value;
Resharper then first suggests that I "Convert to Return Statement" which just changes it back to use the ternary operator.
Any Suggestions?
This looks like exactly the bug identified in RSRP-434610:
given original code that checks an object reference for nullity, and accesses a property of the object if the object reference is not null
R# proposes a refactoring that always accesses the property, and will therefore fail when the object reference is null
The issue has a fix version of 9.1, which was released just a few days ago, although watch out trying to upgrade from within VS.

Code style = when to use comparision value first in 'if' statement

I have seen a few examples lately where if statements are written as follows:
if ( false === $testValue) {
//do something
}
as opposed to the more general:
if ($testValue === false) {
//do something
}
Clearly it is a style issue and it has no bearing on the result, but my question is can anyone say why anyone would use this style and where it comes from.
The code examples I have seen with this style have been from seriously good programmers so I dont think its a necessarily a bad style.
It's so that if you accidentally type = (assignment) instead of == (comparison), the compiler complains that the constant cannot be assigned to.
Compare:
if (false = $testValue) {
// does not compile, cannot assign to constant
}
to:
if ($testValue = false) {
// assigns false to $testValue, never evaluates to true
}
The former doesn't compile, the latter does and has a bug.
I used to see checks like this in C and C++:
if (null == x)
The reason for it was that mistyping = for == would make no sense to the compiler, because assignment to null or a constant would be an error.
In something like C++ (I'm not sure what language you're using there with the ===) if you have
if(x == 2), and you write it if(x=2) (so the value is assigned an not checked for equality) this doesn't cause a compiler error (most compilers today will warn you about it), but if you write if (2=x) instead of if(2==x) that will defintely produce an error.
It's to prevent assignment when comparison was intended.
I don't like this style myself but I see it a lot from our Indian developers so maybe it's being taught over there.
It's completely unnecessary if a '0 warnings, 0 errors' build policy was adhered to, and anyone who uses this style is not likely to provide clean building code.

How to avoid Linq chaining to return null?

I have a problem with code contracts and linq. I managed to narrow the issue to the following code sample. And now I am stuck.
public void SomeMethod()
{
var list = new List<Question>();
if (list.Take(5) == null) { }
// resharper hints that condition can never be true
if (list.ForPerson(12) == null) { }
// resharper does not hint that condition can never be true
}
public static IQueryable<Question> ForPerson(this IQueryable<Question> source, int personId)
{
if(source == null) throw new ArgumentNullException();
return from q in source
where q.PersonId == personId
select q;
}
What is wrong with my linq chain? Why doesn't resharper 'complain' when analyzing the ForPerson call?
EDIT: return type for ForPerson method changed from string to IQueryable, which I meant. (my bad)
Reshaper is correct that the result of a Take or Skip is never null - if there are no items the result is an IEnumerable<Question> which has no elements. I think to do what you want you should check Any.
var query = list.Take(5);
if (!query.Any())
{
// Code here executes only if there were no items in the list.
}
But how does this warning work? Resharper cannot know that the method never returns null from only looking at the method definition, and I assume that it does not reverse engineer the method body to determine that it never returns null. I assume therefore that it has been specially hard-coded with a rule specifying that the .NET methods Skip and Take do not return null.
When you write your own custom methods Reflector can make assumptions about your method behaviour from the interface, but your interface allows it to return null. Therefore it issues no warnings. If it analyzed the method body then it could see that null is impossible and would be able to issue a warning. But analyzing code to determine its possible behaviour is an incredibly difficult task and I doubt that Red Gate are willing to spend the money on solving this problem when they could add more useful features elsewhere with a much lower development cost.
To determine whether a boolean expression can ever return true is called the Boolean satisfiability problem and is an NP-hard problem.
You want Resharper to determine whether general method bodies can ever return null. This is a generalization of the above mentioned NP-hard problem. It's unlikely any tool will ever be able to do this correctly in 100% of cases.
if(source == null) throw new ArgumentNullException();
That's not the code contract way, do you instead mean:
Contract.Require(source != null);

Which syntax is better for return value?

I've been doing a massive code review and one pattern I notice all over the place is this:
public bool MethodName()
{
bool returnValue = false;
if (expression)
{
// do something
returnValue = MethodCall();
}
else
{
// do something else
returnValue = Expression;
}
return returnValue;
}
This is not how I would have done this I would have just returned the value when I knew what it was. which of these two patterns is more correct?
I stress that the logic always seems to be structured such that the return value is assigned in one plave only and no code is executed after it's assigned.
A lot of people recommend having only one exit point from your methods. The pattern you describe above follows that recommendation.
The main gist of that recommendation is that if ou have to cleanup some memory or state before returning from the method, it's better to have that code in one place only. having multiple exit points leads to either duplication of cleanup code or potential problems due to missing cleanup code at one or more of the exit points.
Of course, if your method is couple of lines long, or doesn't need any cleanup, you could have multiple returns.
I would have used ternary, to reduce control structures...
return expression ? MethodCall() : Expression;
I suspect I will be in the minority but I like the style presented in the example. It is easy to add a log statement and set a breakpoint, IMO. Plus, when used in a consistent way, it seems easier to "pattern match" than having multiple returns.
I'm not sure there is a "correct" answer on this, however.
Some learning institutes and books advocate the single return practice.
Whether it's better or not is subjective.
That looks like a part of a bad OOP design. Perhaps it should be refactored on the higher level than inside of a single method.
Otherwise, I prefer using a ternary operator, like this:
return expression ? MethodCall() : Expression;
It is shorter and more readable.
Return from a method right away in any of these situations:
You've found a boundary condition and need to return a unique or sentinel value: if (node.next = null) return NO_VALUE_FOUND;
A required value/state is false, so the rest of the method does not apply (aka a guard clause). E.g.: if (listeners == null) return null;
The method's purpose is to find and return a specific value, e.g.: if (nodes[i].value == searchValue) return i;
You're in a clause which returns a unique value from the method not used elsewhere in the method: if (userNameFromDb.equals(SUPER_USER)) return getSuperUserAccount();
Otherwise, it is useful to have only one return statement so that it's easier to add debug logging, resource cleanup and follow the logic. I try to handle all the above 4 cases first, if they apply, then declare a variable named result(s) as late as possible and assign values to that as needed.
They both accomplish the same task. Some say that a method should only have one entry and one exit point.
I use this, too. The idea is that resources can be freed in the normal flow of the program. If you jump out of a method at 20 different places, and you need to call cleanUp() before, you'll have to add yet another cleanup method 20 times (or refactor everything)
I guess that the coder has taken the design of defining an object toReturn at the top of the method (e.g., List<Foo> toReturn = new ArrayList<Foo>();) and then populating it during the method call, and somehow decided to apply it to a boolean return type, which is odd.
Could also be a side effect of a coding standard that states that you can't return in the middle of a method body, only at the end.
Even if no code is executed after the return value is assigned now it does not mean that some code will not have to be added later.
It's not the smallest piece of code which could be used but it is very refactoring-friendly.
Delphi forces this pattern by automatically creating a variable called "Result" which will be of the function's return type. Whatever "Result" is when the function exits, is your return value. So there's no "return" keyword at all.
function MethodName : boolean;
begin
Result := False;
if Expression then begin
//do something
Result := MethodCall;
end
else begin
//do something else
Result := Expression;
end;
//possibly more code
end;
The pattern used is verbose - but it's also easier to debug if you want to know the return value without opening the Registers window and checking EAX.

Resources