Disabling API function via hotpatch (not globally) - winapi

A third party library that I am using regularly tampers with several Windows API functions, the most annoying one being SetUnhandledExceptionFilter. Which, unsurprisingly, makes my own handler entirely obsolete (try and find out why, if you don't know!).
I'd like to work around this stupidity. The obvious way would be to overwrite the the 5-byte hotpatch prologue with xor eax,eax ret 4 (after having called the function myself), effectively making any further calls no-op.
There are two concerns with this:
Other programs that are running at the same time might want to legitimately call a patched function. They might not be totally braindamaged and might do something useful. Since shared libraries are shared, any other programs loading or already having loaded the same DLL while my program is running will be subject to the patch until my program restores the functionality at exit.
SetUnhandledExceptionFilter lives in kernel32.dll, which is never unloaded. This means that in case of unanticipated non-exception program termination (i.e. user kills the process in TaskManager), the patch will persist until the machine is rebooted. This is a very nasty feature.
Is there a reliable way of doing such a thing and not disrupting/compromising proper functionality of the entire system at the same time?
I have thought about setting protection to PAGE_WRITECOPY rather than PAGE_WRITE before applying the patch (PAGE_EXECUTE_WRITECOPY is tempting too as it shouldn't require resetting protection to PAGE_EXECUTE_READ afterwards, but MSDN says this is only supported after Vista SP1, and XP functionality needs to be maintained).
In my understanding, this should constrain visibility of any changes I make to my process.
Is this a valid assumption, and will such a thing work, also in accordance with other features that I've maybe not thought of (such as DEP, or some special privilegues or other interferences)?

Just replace that IAT entry in the 3rd party library that points to SetUnhandledExceptionFilter, this is far simpler, and is local to the 3rd party library only.
Even better, if the 3rd party library is a dll/binary that you distribute with your app, you can just NOP out the calls it makes to SetUnhandledExceptionFilter, this would prove easier and safer.
I have thought about setting protection to PAGE_WRITECOPY rather than
PAGE_WRITE before applying the patch (PAGE_EXECUTE_WRITECOPY is
tempting too as it shouldn't require resetting protection to
PAGE_EXECUTE_READ afterwards, but MSDN says this is only supported
after Vista SP1, and XP functionality needs to be maintained).
Actually, PAGE_EXECUTE_READWRITE is your best bet, but its generally a good idea to restore the original privileges, unless you need to check if you or someone else tampered with the memory already.

Related

Hooking windows functions

I am interested in hooking the function which return the content of a directory in Windows.
I have came across a tool called EasyHook, however I saw this in their page
Unlike what some (commercial) hooking libraries out there are advertising to boost sales, user-mode hooking can never be an option to apply additional security checks in any safe manner. If you only want to “sandbox” a dedicated process you know well about, and the process in fact doesn’t know about EasyHook, this might succeed! But, don’t ever attempt to write any security software based on user mode hooking. It won’t work, I promise you… This is also why EasyHook does not support a so called “System wide” injection, which in fact is just an illusion, because as I said, with user-mode hooks, this will always be impossible.
http://www.codeproject.com/Articles/27637/EasyHook-The-reinvention-of-Windows-API-hooking
I have asked in the forum there but it seems that no one knows there.
Why is this kind of hooking is not suitable for security analysis?
Basically, I would like to change the output of the function so it will return extra non existing files, such that every calling process will see this changes.
(This is done for security analysis).
Thanks,
Or.

Windows: How to intercept Win32 disk I/O API

On Windows, all disk I/O ultimately happens via Win32 API calls like CreateFile, SetFilePointer, etc.
Now, is it possible to intercept these disk I/O Win32 calls and hook in your own code, at run time, for all dynamically-linked Windows applications? That is, applications that get their CreateFile functionality via a Windows DLL instead of a static, C library.
Some constraints that I have are:
No source code: I won't have the source code for the processes I'd like to intercept.
Thread safety: My hook code may dynamically allocate its own memory. Further, because this memory is going to be shared with multiple intercepted processes (and their threads), I'd like to be able to serialize access to it.
Conditional delegation and overriding : In my hook code, I would like to be able to decide whether to delegate to the original Win32 API functionality, or to use my own functionality, or both. (Much like the optional invocation of the super class method in the overriding method of the subclass in C++ or Java.)
Regular user-space code: I want to be able to accomplish the above without having to write any device-driver, mainly due to the complexity involved in writing one.
If this is possible, I'd appreciate some pointers. Source code is not necessary, but is always welcome!
You may want to look into mhook if Detours isn't what you want.
Here are a couple of problems you may run into while working with hooks:
ASLR can prevent injected code from intercepting the intended calls.
If your hooks are global (using AppInit_DLLs for example), only Kernel32.dll and User32.dll are available when your DLL is loaded. If you want to target functions outside of those modules, you'll need to manually make sure they're available.
I suggest you start with Microsoft Detours. It's free edition also exists and its rather powerful stable as well. For injections you will have to find which injection method will work for your applications in target. Not sure whether you need to code those on your own or not, but a simple tool like "Extreme Injector" would serve you well for testing your approaches. And you definitely do not need any kernel-land drivers to be developed for such a simple task, in my opinion at least. In order to get the full help of me and others, I'd like to see your approach first or list more constraints to the problem at hand or where have you started so far, but had problems. This narrows down a lot chit-chats and can save your time as well.
Now, if you are not familiar with Detours from Microsoft (MSFT) please go ahead and download it from the following link: http://research.microsoft.com/en-us/projects/detours/ once you download it. You are required to compile it yourself. It's very straightforward and it comes with a compiled HTML help file and samples. So far your profiles falls under IAT (Import Address Table) and EAT (Export Address Table).
I hope this non-snippet answer helps you a little bit in your approach to the solution, and if you get stuck come back again and ask. Best of luck!

Substituting a dll, to monitor dll usage

Let's say i have a console application that writes to a file. If I understand correctly, C++ uses some dll, to create and write to the file.
Is it possible, to create a dll with the same name, having the same function signatures, and forward these calls to the real api? The application would not see any change, and it would be possible to notify, or restrict certain calls.
My worry is - is there any security signature that the applications check in a dll?
Would there be any conflicts with the libary names?
You don't need to create a new DLL to replace the original, nor should you. That would have global repercussions on the entre OS. What you should do instead is have your app use Detours to hook the particular DLL functions you are interested in. That way, you are not modifying any DLLs at all, and the OS can do its normal work, while still allowing your custom code to run and deciding whether to call the original DLL functions or not.
yes, entirely possible you can already figure out what the function signatures are and re-implement them (heh, Google already did this with Java JRE :) )
The problem you have is loading a different dll with the same name, though its entirely possible you can do this explicitly with a fixed directory. you can load the dll and then hook up all its functions.
At least that's what I think will happen - having 2 dlls of the same name in the same process might be troublesome (but I think, different path, all's ok).
Security generally isn't done when loading dlls, however MS does this with some .NET assemblies, but the cost is that it takes a long time to load them as there's a significant delay caused by the decryption required to secure the dll. this is why a lot of .NET applications (especially those that use dlls installed in the GAC) are perceived as slow to start - there can be a significant amount of security checking occurring.
I think, generally, if someone has enough access to your computer to install a dll, he could do a lot worse. A skilled hacker woudl just replace the original dll with a new one that does all of the above - and then you wouldn't be able to see a new, rogue dll lying around your system.
If you are security-conscious and worried about this kind of think, the correct way to resolve it is with an intrusion-detection system like AIDE. This scans your computer and builds a database of all the files present, with a secure hash of each. You then re-scan at regular intervals and compare the results with the original DB: any changes will be obvious and can be flagged for investigation or ignored as legitimate changes. Many Linux servers do this regularly as part of their security hardening. For more info, go to ServerFault.

What exactly is the risk when using TerminateProcess?

My Win32 console applicaton uses a third-party library. After it exits WinMain global objects destruction begins and an AV happens somewhere deep inside. I'm really tempted to just write
TerminateProcess( GetCurrentProcess(), 0 );
somewhere near the end of WinMain. If I do this the application ends gracefully.
But MSDN says that doing so can compromise the state of global data maintained by dynamic-link libraries (DLLs) which is not clear. I understand that if I have some global object its destructor is not run and I risk not finalizing a database connection or something similar. I don't have anything like that in my program.
What exactly is the risk when using TerminateProcess? How do I determine if I can use it for my purpose?
Based on the documentation for that and ExtiProcess it seems the primary concern is that DLL's are unloaded without a call to DllMain with the flag DLL_PROCESS_DETACH.
My 2cents: The documentation is being paranoid that you will upset some critical operation which runs in DllMain + DLL_PROCESS_DETACH. Anyone who depends on that to maintain critical state is already at the mercy of task manager so I don't see a huge risk in using this API.
Generally the bad things will happen when interacting with objects outside of your process. For an example say you have some shared memory used by multiple processes that your process will write to and other processes read and or write to. Typically to synchronize the reading and writing a mutex is used. If a thread in your process has acquired the mutex and is in the middle of making changes when TerminatePorcess is called, the mutex will be abandoned and the shared memory potentially left in an inconsistent state.
I suspect you are miss using one of the third party libraries. DllMain is somewhat limiting so the library may have initialize and uninitialize functions that you are supposed to call.
AFAIK, if you're not doing anything "fancy" (which includes but is not limited to: creating threads, locks, DB connections, using COM objects), nothing terrible will happen. But as Earwicker says, you don't know what OS-wide stuff a DLL is doing, and you certainly don't know if that will change in the future, so relying on this is very fragile.
Aren't you curious to know why this access violation is occurring? It may well be the sign of something that became corrupted much earlier on. Please at least confirm that the bug is caused by this 3rd-party library, e.g. by writing a program that links with the library but whose main() does nothing, and confirming that this causes the same crash.
It depends how you interpret "global data". If you take it to mean (as I normally would) data stored in the process's address space, then the advice makes no sense - we know that memory is going to disappear, so who cares what happens to that?
So it may be referring to OS-wide stuff that a DLL may have done, that persists outside the lifetime of any process. A simple example would be a temporary file that might need to be cleaned up; crash the process too many times and you'll run out of disk space, so probably best not to make a habit of it.

Best way to inject functionality into a binary

What would be the best way of inserting functionality into a binary application (3d party, closed source).
The target application is on OSX and seems to have been compiled using gcc 3+. I can see the listing of functions implemented in the binary and have debugged and isolated one particular function which I would like to remotely call.
Specifically, I would like to call this function - let's call it void zoomByFactor(x,y) - when I receive certain data from a complex HIDevice.
I can easily modify or inject instructions into the binary file itself (ie. the patching does not need to occur only in RAM).
What would you recommend as a way of "nicely" doing this?
Edit:
I do indeed need to entire application. So I can't ditch it and use a library. (For those who need an ethical explanation: this is a proprietary piece of CAD software whose company website hasn't been updated since 2006. I have paid for this product (quite a lot of money for what it is, really) and have project data which I can not easily migrate away from it. The product suits me just fine as it is, but I want to use a new HID which I recently got. I've examined the internals of the application, and I'm fairly confident that I can call the correct function with the relevant data and get it to work properly).
Here's what I've done so far, and it is quite gheto.
I've already modified parts of the application through this process:
xxd -g 0 binary > binary.hex
cat binary.hex | awk 'substitute work' > modified.hex
xxd -r modified.hex > newbinary
chmod 777 newbinary
I'm doing this kind of jumping through hoops because the binary is almost 100 megs large.
The jist of what I'm thinking is that I'd jmp somewhere in the main application loop, launch a thread, and return to the main function.
Now, the questions are: where can I insert the new code? do I need to modify symbol tables? alternatively, how could I make a dylib load automatically so that the only "hacking" I need to do is inserting a call to a normally loaded dylib into the main function?
For those interested in what I've ended up doing, here's a summary:
I've looked at several possibilities. They fall into runtime patching, and static binary file patching.
As far as file patching is concerned, I essentially tried two approaches:
modifying the assembly in the code
segments (__TEXT) of the binary.
modifying the load commands in the
mach header.
The first method requires there to be free space, or methods you can overwrite. It also suffers from extremely poor maintainability. Any new binaries will require hand patching them once again, especially if their source code has even slightly changed.
The second method was to try and add a LC_ LOAD_ DYLIB entry into the mach header. There aren't many mach-o editors out there, so it's hairy, but I actually modified the structures so that my entry was visible by otool -l. However, this didn't actually work as there was a dyld: bad external relocation length at runtime. I'm assuming I need to muck around with import tables etc. And this is way too much effort to get right without an editor.
Second path was to inject code at runtime. There isn't much out there to do this. Even for apps you have control over (ie. a child application you launch). Maybe there's a way to fork() and get the initialization process launched, but I never go that.
There is SIMBL, but this requires your app to be Cocoa because SIMBL will pose as a system wide InputManager and selectively load bundles. I dismissed this because my app was not Cocoa, and besides, I dislike system wide stuff.
Next up was mach_ inject and the mach_star project. There is also a newer project called
PlugSuit hosted at google which seems to be nothing more than a thin wrapper around mach_inject.
Mach_inject provides an API to do what the name implies. I did find a problem in the code though. On 10.5.4, the mmap method in the mach_inject.c file requires there to be a MAP_ SHARED or'd with the MAP_READ or else the mmap will fail.
Aside from that, the whole thing actually works as advertised. I ended up using mach_ inject_ bundle to do what I had intended to do with the static addition of a DYLIB to the mach header: namely launching a new thread on module init that does its dirty business.
Anyways, I've made this a wiki. Feel free to add, correct or update information. There's practically no information available on this kind of work on OSX. The more info, the better.
In MacOS X releases prior to 10.5 you'd do this using an Input Manager extension. Input Manager was intended to handle things like input for non-roman languages, where the extension could popup a window to input the appropriate glyphs and then pass the completed text to the app. The application only needed to make sure it was Unicode-clean, and didn't have to worry about the exact details of every language and region.
Input Manager was wildly abused to patch all sorts of unrelated functionality into applications, and often destabilized the app. It was also becoming an attack vector for trojans, such as "Oompa-Loompa". MacOS 10.5 tightens restrictions on Input Managers: it won't run them in a process owned by root or wheel, nor in a process which has modified its uid. Most significantly, 10.5 won't load an Input Manager into a 64 bit process and has indicated that even 32 bit use is unsupported and will be removed in a future release.
So if you can live with the restrictions, an Input Manager can do what you want. Future MacOS releases will almost certainly introduce another (safer, more limited) way to do this, as the functionality really is needed for language input support.
I believe you could also use the DYLD_INSERT_LIBRARIES method.
This post is also related to what you were trying to do;
I recently took a stab at injection/overriding using the mach_star sources. I ended up writing a tutorial for it since documentation for this stuff is always so sketchy and often out of date.
http://soundly.me/osx-injection-override-tutorial-hello-world/
Interesting problem. If I understand you correctly, you'd like to add the ability to remotely call functions in a running executable.
If you don't really need the whole application, you might be able to strip out the main function and turn it into a library file that you can link against. It'll be up to you to figure out how to make sure all the required initialization occurs.
Another approach could be to act like a virus. Inject a function that handles the remote calls, probably in another thread. You'll need to launch this thread by injecting some code into the main function, or wherever else is appropriate. Most likely you'll run into major issues with initialization, thread safety, and/or maintaining proper program state.
The best option, if its available, is to get the vendor of your application to expose a plugin API that lets you do this cleanly and reliably in a supported manner.
If you go with either hack-the-binary route, it'll be time consuming and brittle, but you'll learn a lot in the process.
On Windows, this is simple to do, is actually very widely done and is known as DLL/code injection.
There is a commercial SDK for OSX which allows doing this: Application Enhancer (free for non-commercial use).

Resources