Randomize numbers in Lua with no repeats - random

I am doing a project in Lua which involves randomizing numbers without repeats. Here's my code
for i = 1, 86000 do
while rndom[num] ~= nil do
num = math.random(1,95000)
end
rndom[num] = num
for k=1, 11 do
file2:write(input[num][k], " ")
end
file2:write("\n")
end
Basically it puts a value to the rndom[num] so that when randomized number repeats and rndom[num] ~= nil, it will randomize number again. My problem is, it's taking too long to load as my 'i' gets higher and there will come a time that it will stop. I'm guessing it's because randomizer can't get a rndom[num] that's 'nil'. I mean, what are the odds right? I'd like to improve the running time of it. Anyone who can suggest a better solution to my problem?
Thanks!

It is better to generate a permutation with O(N) time complexity.
local n = 95000
local t = {}
for i = 1, n do
t[i] = i
end
for i = 1, 86000 do
local j = math.random(i, n)
t[i], t[j] = t[j], t[i]
for k = 1, 11 do
file2:write(input[t[i]][k], " ")
end
file2:write"\n"
end

One simple solution is instead of using random again when you get a variable you already have, trying to return the next one available. That way you are guaranteed to have O(N^2) running time (maximum).

Related

Ruby prime number sum

I am trying to take the sum of the n first prime numbers. I found a way of showing the first 100, but I don't know how to get rid of 1 and how to make a sum with the numbers. I was thinking about storing them into an array, but I can not figure it out.
num = 1
last = 100
while (num <= last)
condition = true
x = 2
while (x <= num / 2)
if (num % x == 0)
condition = false
break
end
x = x + 1
end
primes = [] # Here
if condition
puts num.to_s
primes << num.to_s # Here
end
num = num + 1
end
puts primes.inject(:+) # Here
Based on what I understood from what you guys are saying I added these lines (the ones commented # Here). It still does not print the sum of them. What I meant with getting rid of 1 is that I know that 1 is not considered a prime number, and I do not get how to make it without 1. Thank you very much guys for your time and answers, and please understand that I am just starting to study this.
If you want to add a list of numbers together you can use the following:
list_of_prime_numbers.inject(0) {|total,prime| total + prime}
This will take the list of numbers, and add them one by one to an accumulator (total) that was injected into the loop (.inject(0)), add it to the current number (prime) and then return the total which then becomes the value of total in the next iteration.
I'm not quite sure what you mean by:
I don't know how to get rid of 1
but if you mean to not use the first number (which is 1 in a list of primes starting from 0)
then you could do:
list_of_prime_numbers[1...list_of_prime_numbers.length].
inject(0) {|total,prime| total + prime}
Which would only get all the numbers except the first up to but not including the length of the array
and as for getting the number into the array you could push it into the array like so:
list_of_prime_numbers << prime_number
You can make use of Prime Enumerable in ruby
require 'prime'
((1..100).select { |number| Prime.prime?(number) }).inject(:+)
OR
Prime.each(100).inject(:+)
Hope this helps.

Code Optimization - Generating Prime Numbers

I am trying to write a code for the following problem:
Input
The input begins with the number t of test cases in a single line (t<=10). In each of the next t lines there are two numbers m and n (1 <= m <= n <= 1000000000, n-m<=100000) separated by a space.
Output
For every test case print all prime numbers p such that m <= p <= n, one number per line, test cases separated by an empty line.
Sample Input:
2
1 10
3 5
Sample Output:
2
3
5
7
3
5
My code:
def prime?(number)
return false if number == 1
(2..number-1).each do |n|
return false if number % n == 0
end
true
end
t = gets.strip.to_i
for i in 1..t
mi, ni = gets.strip.split(' ')
mi = mi.to_i
ni = ni.to_i
i = mi
while i <= ni
puts i if prime?(i)
i += 1
end
puts "\n"
end
The code is running fine, only problem I am having is that it is taking a lot of time when run against big input ranges as compared to other programming languages.
Am I doing something wrong here? Can this code be further optimized for faster runtime?
I have tried using a for loop, normal loop, creating an array and then printing it.
Any suggestions.
Ruby is slower than some other languages, depending on what language you compare it to; certainly slower than C/C++. But your problem is not the language (although it influences the run-time behavior), but your way of finding primes. There are many better algorithms for finding primes, such as the Sieve of Eratosthenes or the Sieve of Atkin. You might also read the “Generating Primes” page on Wikipedia and follow the links there.
By the way, for the Sieve of Eratosthenes, there is even a ready-to-use piece of code on Stackoverflow. I'm sure a little bit of googling will turn up implementations for other algorithms, too.
Since your problem is finding primes within a certain range, this is the Sieve of Eratosthenes code found at the above link modified to suit your particular problem:
def better_sieve_upto(first, last)
sieve = [nil, nil] + (2..last).to_a
sieve.each do |i|
next unless i
break if i*i > last
(i*i).step(last, i) {|j| sieve[j] = nil }
end
sieve.reject {|i| !i || i < first}
end
Note the change from "sieve.compact" to a complexer "sieve.reject" with a corresponding condition.
Return true if the number is 2, false if the number is evenly divisible by 2.
Start iterating at 3, instead of 2. Use a step of two.
Iterate up to the square root of the number, instead of the number minus one.
def prime?(number)
return true if number == 2
return false if number <= 1 or number % 2 == 0
(3..Math.sqrt(number)).step(2) do |n|
return false if number % n == 0
end
true
end
This will be much faster, but still not very fast, as #Technation explains.
Here's how to do it using the Sieve of Eratosthenes built into Ruby. You'll need to precompute all the primes up to the maximum maximum, which will be very quick, and then select the primes that fall within each range.
require 'prime'
ranges = Array.new(gets.strip.to_i) do
min, max = gets.strip.split.map(&:to_i)
Range.new(min, max)
end
primes = Prime.each(ranges.map(&:max).max, Prime::EratosthenesGenerator.new)
ranges.each do |range|
primes.each do |prime|
next if prime < range.min
break if prime > range.max
puts prime
end
primes.rewind
puts "\n"
end
Here's how the various solutions perform with the range 50000 200000:
Your original prime? function: 1m49.639s
My modified prime? function: 0m0.687s
Prime::EratosthenesGenerator: 0m0.221s
The more ranges being processed, the faster the Prime::EratosthenesGenerator method should be.

What is the logic behind the algorithm

I am trying to solve a problem from codility
"Even sums"
but am unable to do so. Here is the question below.
Even sums is a game for two players. Players are given a sequence of N positive integers and take turns alternately. In each turn, a player chooses a non-empty slice (a subsequence of consecutive elements) such that the sum of values in this slice is even, then removes the slice and concatenates the remaining parts of the sequence. The first player who is unable to make a legal move loses the game.
You play this game against your opponent and you want to know if you can win, assuming both you and your opponent play optimally. You move first.
Write a function:
string solution(vector< int>& A);
that, given a zero-indexed array A consisting of N integers, returns a string of format "X,Y" where X and Y are, respectively, the first and last positions (inclusive) of the slice that you should remove on your first move in order to win, assuming you have a winning strategy. If there is more than one such winning slice, the function should return the one with the smallest value of X. If there is more than one slice with the smallest value of X, the function should return the shortest. If you do not have a winning strategy, the function should return "NO SOLUTION".
For example, given the following array:
A[0] = 4 A[1] = 5 A[2] = 3 A[3] = 7 A[4] = 2
the function should return "1,2". After removing a slice from positions 1 to 2 (with an even sum of 5 + 3 = 8), the remaining array is [4, 7, 2]. Then the opponent will be able to remove the first element (of even sum 4) or the last element (of even sum 2). Afterwards you can make a move that leaves the array containing just [7], so your opponent will not have a legal move and will lose. One of possible games is shown on the following picture
Note that removing slice "2,3" (with an even sum of 3 + 7 = 10) is also a winning move, but slice "1,2" has a smaller value of X.
For the following array:
A[0] = 2 A[ 1 ] = 5 A[2] = 4
the function should return "NO SOLUTION", since there is no strategy that guarantees you a win.
Assume that:
N is an integer within the range [1..100,000]; each element of array A is an integer within the range [1..1,000,000,000]. Complexity:
expected worst-case time complexity is O(N); expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments). Elements of input arrays can be modified.
I have found a solution online in python.
def check(start, end):
if start>end:
res = 'NO SOLUTION'
else:
res = str(start) + ',' + str(end)
return res
def trans( strr ):
if strr =='NO SOLUTION':
return (-1, -1)
else:
a, b = strr.split(',')
return ( int(a), int(b) )
def solution(A):
# write your code in Python 2.7
odd_list = [ ind for ind in range(len(A)) if A[ind]%2==1 ]
if len(odd_list)%2==0:
return check(0, len(A)-1)
odd_list = [-1] + odd_list + [len(A)]
res_cand = []
# the numbers at the either end of A are even
count = odd_list[1]
second_count = len(A)-1-odd_list[-2]
first_count = odd_list[2]-odd_list[1]-1
if second_count >= count:
res_cand.append( trans(check( odd_list[1]+1, len(A)-1-count )))
if first_count >= count:
res_cand.append( trans(check( odd_list[1]+count+1, len(A)-1 )))
twosum = first_count + second_count
if second_count < count <= twosum:
res_cand.append( trans(check( odd_list[1]+(first_count-(count-second_count))+1, odd_list[-2] )))
###########################################
count = len(A)-1-odd_list[-2]
first_count = odd_list[1]
second_count = odd_list[-2]-odd_list[-3]-1
if first_count >= count:
res_cand.append( trans(check( count, odd_list[-2]-1 )))
if second_count >= count:
res_cand.append( trans(check( 0, odd_list[-2]-count-1)) )
twosum = first_count + second_count
if second_count < count <= twosum:
res_cand.append( trans(check( count-second_count, odd_list[-3])) )
res_cand = sorted( res_cand, key=lambda x: (-x[0],-x[1]) )
cur = (-1, -2)
for item in res_cand:
if item[0]!=-1:
cur = item
return check( cur[0], cur[1] )
This code works and I am unable to understand the code and flow of one function to the the other. However I don't understand the logic of the algorithm. How it has approached the problem and solved it. This might be a long task but can anybody please care enough to explain me the algorithm. Thanks in advance.
So far I have figured out that the number of odd numbers are crucial to find out the result. Especially the index of the first odd number and the last odd number is needed to calculate the important values.
Now I need to understand the logic behind the comparison such as "if first_count >= count" and if "second_count < count <= twosum".
Update:
Hey guys I found out the solution to my question and finally understood the logic of the algorithm.
The idea lies behind the symmetry of the array. We can never win the game if the array is symmetrical. Here symmetrical is defined as the array where there is only one odd in the middle and equal number of evens on the either side of that one odd.
If there are even number of odds we can directly win the game.
If there are odd number of odds we should always try to make the array symmetrical. That is what the algorithm is trying to do.
Now there are two cases to it. Either the last odd will remain or the first odd will remain. I will be happy to explain more if you guys didn't understand it. Thanks.

Why is my ruby script execution too long?

I am trying to solve a problem from http://www.beatmycode.com/challenge/5/take, and I wrote a script:
def is_prime?(num)
(2...num).each do |divisor|
return false if num % divisor == 0
end
true
end
def circular_prime(num)
circular_primes = []
if num < 2
return false
end
(2..num-1).each do |number|
is_prime?(number)
result = [number.to_s]
(0..number.to_s.size-2).each do |x|
var = result.last.split('')
result << var.unshift(var.pop).join if var.uniq.size != 1
end
circular_primes << result if result.all?{ |x| is_prime? x.to_i }
end
end
When I tested it with 10,100,1000, and 10_000, the script executed very fast, but when I tested with 100_000, the shell displayed an Interrupt error. Where is the weak point, and how can I fix it?
Your is_prime? method is too slow. Some minor improvement could be:
You don't have to test divisor all the way upto num, the square root of
num is enough.
You can skip all even numbers since 2 is the only even prime
number.
However, this is still not good enough because the algorithm is slow. Since you need to generate prime numbers among consecutive integers, consider using Sieve of Eratosthenes.
Of course there's prime standard library but I assume you want to do this manually.
This script's time complexity is O(n^2), so it's expected that it will take long time to finish for big input. Try using https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes to find primes and remembering which number is a prime in some array.

Why is my Ruby code for Project Euler #10 so slow?

I am relatively new to Ruby but it seems simple enough as far as a language goes. I am working through the Euler Project with Ruby and I'm having a huge issue with speed on the following:
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
Find the sum of all the primes below two million.
My code:
beginning_time = Time.now
(1..10000).each { |i| i }
def isPrime(num)
factors = 0
primecount = 1
while primecount <= num
if (num%primecount == 0)
factors += 1
end
if (factors > 2)
return false
end
primecount += 1
end
return true
end
def make_sieve(num)
sieve = Array.new(num)
summation = 0
for i in 1..num
if(isPrime(i) == true)
summation += i
puts i
for x in i..num
if x%i == 0
# Go through entire array and make all multiples of i False
sieve[x] = false
else
sieve[i] = true
end
end
else
# If i is NOT prime, move to the next number. in the For Loop
next
end
end
puts summation
end
make_sieve(2000000)
end_time = Time.now
puts "Time elapsed #{(end_time - beginning_time)*1000} milliseconds"
I think I have the right idea with the sieve but I really have no clue what's going on that makes this program run so slow. I run it with 20,000 and it takes about 15 seconds, which seems slow even still, although the output comes out MUCH faster than when I put 2,000,000.
Am I going about this the wrong way logically or syntactically or both?
Your isPrime() test is very slow on primes; but you don't even need it. The key to sieve is, initially all the numbers are marked as prime; then for each prime we mark off all its multiples. So when we get to a certain entry in the sieve, we already know whether it is a prime or not - whether it is marked true for being prime, or it is marked false for being composite (a multiple of some smaller prime).
There is no need to test it being prime, at all.
And to find the multiples, we just count: for 5, it's each 5th entry after it; for 7 - each 7th. No need to test them with % operator, just set to false right away. No need to set any of them to true, because all numbers were set to true at the start.
You seem to be writing JavaScript code in Ruby, and are missing the subtleties that makes Ruby so elegant. You should take a look at something like Ruby Best Practices, which is quite a light read but deals with using Ruby idioms instead of imposing the concepts of another language.
As has been said, the whole point of an Eratosthenes sieve is that you just remove all compound numbers from a list, leaving just the primes. There is no need to check each element for primeness.
This is a Rubyish solution. It runs in about 1.5 seconds. It is a little complicated by the representing number N by array element N-1, so (i+i+1 .. num).step(i+1) is equivalent to (n * 2 .. num).step(n)
def make_sieve(num)
sieve = Array.new(num, true)
sieve.each_with_index do |is_prime, i|
next if i == 0 or not is_prime
(i+i+1 .. num).step(i+1) { |i| sieve[i] = false }
end
puts sieve.each_index.select { |i| sieve[i] }.map { |i| i+1 }.inject(:+)
end
make_sieve(2_000_000)
output
142913828923

Resources