Generate list in prolog - prolog

I'm try to make a list of the values n,n+1,...2*n-1
for example if I have n=4 ==> [4,5,6,7]
I have managed to write this code but it shows the list of first n elements. Can you help me modify it?
create(N,L):-
create_list(N,[],L).
create_list(0,L,L).
create_list(N,R,L):-
N>0,
N1=N-1,
create_list(N1,[N|R],L).

Here's how you could write a logically pure version of create/2 based on list_from_to/3, defined in my answer to question "Fill list in SWI-Prolog":
create(From,Zs):-
To #= 2*From-1,
list_from_to(Zs,From,To).
Here the query you had in your question:
?- create(4,Zs).
Zs = [4,5,6,7] ;
false.
As create/2 is pure, it is versatile and can also be used in different ways:
?- create(N,[4,5,6,7]).
N = 4.
?- create(N,[4,_,_,_]).
N = 4.

You're doing 'in reverse', in a certain sense. Try
create(N,L):-
M is 2*N,
create_list(N,M,L).
create_list(N,M,[N|R]):-
N < M,
N1 = N+1, % note: check if your Prolog accepts is/2 instead
create_list(N1,M,R).
create_list(M,M,[]).

Related

Tail-recursive list of divisors of an integer in prolog

I am trying to make a simple tail-recursive loop to collect the divisors of an integer, divisors(N,List) and its working when List is not instantiated, for example,
?- divisors(14,What).
What = [2, 7] ?
And I can verify that the wrong list is not the list of divisors,
?- divisors(14,[2, 8]).
no
Unless I try to verify that [] is not the list, this unfortunately succeeds:
?- divisors(14,[]).
true
can see in the debugger why it is erroneously succeeding, but I don't see how to fix this:
divisors_aux(1,_,L,L).
divisors_aux(D,N,List,Aux) :- D>1,0 is N mod D,D1 is D-1,
divisors_aux(D1,N,List,[D|Aux]).
divisors_aux(D,N,List,Aux) :- D>1,D1 is D-1,divisors_aux(D1,N,List,Aux).
divisors(N,List) :- N>1,nonvar(N),D is N-1,divisors_aux(D,N,List,[]).
I know there are looping approaches (foreach, etc.) but I am trying to make this "brute force" approach work based on what I have learned so far (roughly first 100 pages of Covington et. al.)
Thanks.
Your problem is that when the second clause of divisors_aux/3 fails (or if it succeeds and you ask for another solution) it will always backtrack to the third clause.
You may want to guard the third clause with \+(0 is N mod D) so that it fails when the current number is a divisor of N.
Or alternatively join both clauses with an if-then-else construct:
divisors_aux(1,_,L,L).
divisors_aux(D,N,List,Aux) :- D>1,
(0 is N mod D -> Aux1=[D|Aux] ; Aux1=Aux),
D1 is D-1,
divisors_aux(D1,N,List,Aux1).
divisors(N,List) :- N>1,nonvar(N),D is N-1,divisors_aux(D,N,List,[]).

CLPFD ins operator yields not sufficiently instantiated error

So, my goal is to make a map colourer in Prolog. Here's the map I'm using:
And this are my colouring constraints:
colouring([A,B,C,D,E,F]) :-
maplist( #\=(A), [B,C,D,E] ),
maplist( #\=(B), [C,D,F]),
C #\= D,
maplist( #\=(D), [E,F]),
E #\= F.
Where [A,B,C,D,E,F] is a list of numbers(colors) from 1 to n.
So I want my solver to, given a List of 6 colors and a natural number N, determine the colors and N constraints both ways, in a way that even the most general query could yield results:
regions_ncolors(L,N) :- colouring(L), L ins 1..N, label(L).
Where the most general query is regions_ncolors(L,N).
However, the operator ins doesn't seem to accept a variable N, it instead yields an argument not sufficiently instantiated error. I've tried using this solution instead:
int_cset_(N,Acc,Acc) :- N #= 0.
int_cset_(N,Acc,Cs) :- N_1 #= N-1, int_cset_(N_1,[N|Acc],Cs).
int_cset(N,Cs) :- int_cset_(N,[],Cs).
% most general solver
regions_ncolors(L,N) :- colouring(L), int_cset(N,Cs), subset(L,Cs), label(L).
Where the arguments in int_cset(N,Cs) is a natural number(N) and the counting set Sn = {1,2,...,N}
But this solution is buggy as regions_ncolors(L,N). only returns the same(one) solution for all N, and when I try to add a constraint to N, it goes in an infinite loop.
So what can I do to make the most general query work both ways(for not-instantiated variables)?
Thanks in advance!
Btw, I added a swi-prolog tag in my last post although it was removed by moderation. I don't know if this question is specific to swi-prolog which is why I'm keeping the tag, just in case :)
Your colouring is too specific, you encode the topology of your map into it. Not a problem as is, but it defeats of the purpose of then having a "most general query" solution for just any list.
If you want to avoid the problem of having a free variable instead of a list, you could first instantiate the list with length/2. Compare:
?- L ins 1..3.
ERROR: Arguments are not sufficiently instantiated
ERROR: In:
ERROR: [16] throw(error(instantiation_error,_86828))
ERROR: [10] clpfd:(_86858 ins 1..3) ...
Is that the same problem as you see?
If you first make a list and a corresponding set:
?- length(L, N), L ins 1..N.
L = [],
N = 0 ;
L = [1],
N = 1 ;
L = [_A, _B],
N = 2,
_A in 1..2,
_B in 1..2 ;
L = [_A, _B, _C],
N = 3,
_A in 1..3,
_B in 1..3,
_C in 1..3 .
If you use length/2 like this you will enumerate the possible lists and integer sets completely outside of the CLP(FD) labeling. You can then add more constraints on the variables on the list and if necessary, use labeling.
Does that help you get any further with your problem? I am not sure how it helps for the colouring problem. You would need a different representation of the map topology so that you don't have to manually define it within a predicate like your colouring/1 you have in your question.
There are several issues in your program.
subset/2 is impure
SWI's (by default) built-in predicate subset/2 is not the pure relation you are hoping for. Instead, it expects that both arguments are already sufficiently instantiated. And if not, it takes a guess and sticks to it:
?- colouring(L), subset(L,[1,2,3,4,5]).
L = [1,2,3,4,2,1].
?- colouring(L), subset(L,[1,2,3,4,5]), L = [2|_].
false.
?- L = [2|_], colouring(L), subset(L,[1,2,3,4,5]), L = [2|_].
L = [2,1,3,4,1,2].
With a pure definition it is impossible that adding a further goal as L = [2|_] in the third query makes a failing query succeed.
In general it is a good idea to not interfere with labeling/2 except for the order of variables and the options argument. The internal implementation is often much faster than manual instantiations.
Also, your map is far too simple to expose subset/2s weakness. Not sure what the minimal failing graph is, but here is one such example from
R. Janczewski et al. The smallest hard-to-color graph for algorithm DSATUR, Discrete Mathematics 236 (2001) p.164.
colouring_m13([K1,K2,K3,K6,K5,K7,K4]):-
maplist(#\=(K1), [K2,K3,K4,K7]),
maplist(#\=(K2), [K3,K5,K6]),
maplist(#\=(K3), [K4,K5]),
maplist(#\=(K4), [K5,K7]),
maplist(#\=(K5), [K6,K7]),
maplist(#\=(K6), [K7]).
?- colouring_m13(L), subset(L,[1,2,3,4]).
false. % incomplete
?- L = [3|_], colouring_m13(L), subset(L,[1,2,3,4]).
L = [3,1,2,2,3,1,4].
int_cset/2 never terminates
... (except for some error cases like int_cset(non_integer, _).). As an example consider:
?- int_cset(1,Cs).
Cs = [1]
; loops.
And don't get fooled by the fact that an actual solution was found! It still does not terminate.
#Luis: But how come? I'm getting baffled by this, the same thing is happening on ...
To see this, you need the notion of a failure-slice which helps to identify the responsible part in your program. With some falsework consisting of goals false the responsible part is exposed.
All unnecessary parts have been removed by false. What remains has to be changed somehow.
int_cset_(N,Acc,Acc) :- false, N #= 0.
int_cset_(N,Acc,Cs) :- N1 #= N-1, int_cset_(N1,[N|Acc],Cs), false.
int_cset(N,Cs) :- int_cset_(N,[],Cs), false.
?- int_cset(1, Cs), false.
loops.
Adding the redundant goal N1 #> 0
will avoid unnecessary non-termination.
This alone will not solve your problem since if N is not given, you will still encounter non-termination due to the following failure slice:
regions_ncolors(L,N) :-
colouring(L),
int_cset(N,Cs), false,
subset(L,Cs),
label(L).
In int_cset(N,Cs), Cs occurs for the first time and thus cannot influence termination (there is another reason too, its definition would ignore it as well..) and therefore only N has a chance to induce termination.
The actual solution has been already suggested by #TA_intern using length/2 which liberates one of such mode-infested chores.

Prolog internal variable names

I have a large numbers of facts that are already in my file (position(M,P)), M is the name and P is the position of the player , I am asked to do a player_list(L,N), L is the list of players and N is the size of this list. I did it and it works the problem is that it gives the list without the names it gives me numbers and not names
player_list([H|T],N):- L = [H|T],
position(H,P),
\+ member(H,L),
append(L,H),
player_list(T,N).
what I get is:
?- player_list(X,4).
X = [_9176, _9182, _9188, _9194] .
so what should I do ?
You could use an additional list as an argument to keep track of the players you already have. This list is empty at the beginning, so the calling predicate calls the predicate describing the actual relation with [] as an additional argument:
player_list(PLs,L) :-
pl_l_(PLs,L,[]). % <- actual relation
The definition you posted is missing a base case, that is, if you already have the desired amount of players, you can stop adding others. In this case the number of players to add is zero otherwise it is greater than zero. You also have to describe that the head of the list (PL) is a player (whose position you don't care about, so the variable is preceded by an underscore (_P), otherwise the goal is just like in your code) and is not in the accumulator yet (as opposed to your code, where you check if PL is not in L) but in the recursive call it is in the accumulator. You can achieve the latter by having [PL|Acc0] in the recursive goal, so you don't need append/2. Putting all this together, your code might look something like this:
pl_l_([],0,_). % base case
pl_l_([PL|PLs],L1,Acc0) :-
L1 > 0, % number of players yet to add
L0 is L1-1, % new number of players to add
position(PL,_P), % PL is a player and
\+ member(PL,Acc0), % not in the accumulator yet
pl_l_(PLs,L0,[PL|Acc0]). % the relation holds for PLs, L0 and [PL|Acc0] as well
With respect to your comment, I assume that your code contains the following four facts:
position(zlatan,center).
position(rooney,forward).
position(ronaldo,forward).
position(messi,forward).
Then your example query yields the desired results:
?- player_list(X,4).
X = [zlatan,rooney,ronaldo,messi] ? ;
X = [zlatan,rooney,messi,ronaldo] ? ;
...
If you intend to use the predicate the other way around as well, I suggest the use of CLP(FD). To see why, consider the most general query:
?- player_list(X,Y).
X = [],
Y = 0 ? ;
ERROR at clause 2 of user:pl_l_/3 !!
INSTANTIATION ERROR- =:=/2: expected bound value
You get this error because >/2 expects both arguments to be ground. You can modify the predicate pl_l_/3 to use CLP(FD) like so:
:- use_module(library(clpfd)).
pl_l_([],0,_).
pl_l_([PL|PLs],L1,Acc0) :-
L1 #> 0, % <- new
L0 #= L1-1, % <- new
position(PL,_P),
\+ member(PL,Acc0),
pl_l_(PLs,L0,[PL|Acc0]).
With these modifications the predicate is more versatile:
?- player_list([zlatan,messi,ronaldo],Y).
Y = 3
?- player_list(X,Y).
X = [],
Y = 0 ? ;
X = [zlatan],
Y = 1 ? ;
X = [zlatan,rooney],
Y = 2 ?
...

Insert a given value v after the 1-st, 2-nd, 4-th, 8-th ... element of a list. (Prolog)

I'm trying to solve this problem in SWI Prolog, and my code currently looks like this:
insert(L1,X,L2):-
COUNTER = 1,
NEXT = 1,
insert_plus(L1,COUNTER,NEXT,X,L2).
insert_plus([],_,_,_,[]).
insert_plus([H|T],COUNTER,NEXT,X,[H|T1]) :- % don't insert
COUNTER \= NEXT,
insert_plus(T,COUNTER+1,NEXT,X,T1).
insert_plus([H|T],COUNTER,NEXT,X,[H|[X|T]]) :- % DO insert
COUNTER = NEXT,
insert_plus(T,COUNTER+1,NEXT*2,X,T).
Can someone explain why this does not always work as expected?
?- insert([1,2,3,4,5,6,7],9,X).
X = [1,9,2,3,4,5,6,7]. % BAD! expected: `X = [1,9,2,9,3,4,9,5,6,7]`
Prolog doesn't evaluate expressions, it proves relations. So arithmetic must be carried away explicitly. Here
...
insert_plus(T, COUNTER+1, NEXT, X, T1).
you need
...
SUCC is COUNTER+1,
insert_plus(T, SUCC, NEXT, X, T1).
the same problem - with both COUNTER and NEXT - occurs in the last rule.
The absolute bare minimum that you need to change is:
insert_plus([],_,_,_,[]).
insert_plus([H|T],COUNTER,NEXT,X,[H|T1]) :-
COUNTER =\= NEXT, % `(=\=)/2` arithmetic not-equal
insert_plus(T,COUNTER+1,NEXT,X,T1).
insert_plus([H|T],COUNTER,NEXT,X,[H|[X|T1]]) :- % use `T1`, not `T`
COUNTER =:= NEXT, % `(=:=)/2` arithmetic equal
insert_plus(T,COUNTER+1,NEXT*2,X,T1). % use `T1` (as above)
Sample query:
?- insert([1,2,3,4,5,6,7],9,X).
X = [1,9,2,9,3,4,9,5,6,7]. % expected result
In addition to the above changes I recommend you take advise that #CapelliC gave
in his answer concerning arithmetic expression evaluation using the builtin Prolog predicate (is)/2...
... or, even better, use clpfd!

prolog function returning memory locations instead of values

just started programming with prolog and I'm having a few issues. The function I have is supposed to take a value X and copy it N number of times into M. My function returns a list of N number of memory locations. Here's the code, any ideas?
duple(N,_,M):- length(M,Q), N is Q.
duple(N,X,M):- append(X,M,Q), duple(N,X,Q).
Those are not memory adresses. Those are free variables. What you see is their internal names in your prolog system of choice. Then, as #chac pointed out (+1 btw), the third clause is not really making sense! Maybe you can try to tell us what you meant so that we can bring light about how to do it correctly.
I'm going to give you two implementations of your predicate to try to show you correct Prolog syntax:
duple1(N, X, L) :-
length(L, N),
maplist(=(X), L).
Here, in your duple1/3 predicate, we tell prolog that the length of the resulting list L is N, and then we tell it that each element of L should be unified with X for the predicate to hold.
Another to do that would be to build the resulting list "manually" through recursion:
duple2(0, _X, []).
duple2(N, X, [X|L]) :-
N > 0,
NewN is N - 1,
duple1(NewN, X, L).
Though, note that because we use >/2, is and -/2, ie arithmetic, we prevent prolog from using this predicate in several ways, such as:
?- duple1(X, Y, [xyz, xyz]).
X = 2,
Y = xyz.
This worked before, in our first predicate!
Hope this was of some help.
I suppose you call your predicate, for instance, in this way:
?- duple(3,xyz,L).
and you get
L = [_G289, _G292, _G295] ;
ERROR: Out of global stack
If you try
?- length(X,Y).
X = [],
Y = 0 ;
X = [_G299],
Y = 1 ;
X = [_G299, _G302],
Y = 2 ;
X = [_G299, _G302, _G305],
Y = 3 ;
X = [_G299, _G302, _G305, _G308],
Y = 4 .
...
you can see what's happening:
your query will match the specified *M*, displaying a list of M uninstantiated variables (memory locations), then continue backtracking and generating evee longer lists 'til there is stack space. Your second rule will never fire (and I don't really understand its purpose).
A generator is easier to write in this way:
duple(N,X,M) :- findall(X,between(1,N,_),M).
test:
?- duple(3,xyz,L).
L = [xyz, xyz, xyz].

Resources