algorithms- stack and queue - algorithm

I am doing revision for my exams and I came across this question which I need to find the contents of Q1 after the following code are executed.
The datas
5, 7, 12, 4, 0, 4, 6, 8, 67, 34, 23, 5, 0, 44, 33, 22, 6, 0
The pusedo-code
Q1=createQueue
S1=createStack
loop (not end of file)
read number
if (number not 0)
pushStack (S1,number)
else
popStack (S1,x)
popStack (S1,x)
loop (not empty S1)
popStack (S1,x)
enqueue (Q1,x)
end loop
end if
end loop
Here is my solutions
if number is not 0, push the numbers to the stack
so now the stack becomes
6
22
33
44
5
23
34
67
8
6
4
4
12
7
5
else pop the first 2 elements of the stack
so now the stack becomes
33
44
5
23
34
67
8
6
4
4
12
7
5
3.loop stack !empty, pop the stack and enqueue in Q1.so now the stack is empty and the queue becomes
5,7,12,4,4,6,8,67,34,23,5,44,33
33 is the first in the queue and 5 is the last of the queue.
I double checked with the answer provided and found out that my answers is different
The provided answer
7,5,34,67,8,6,4,33,44
I am not sure who is correct. please help.

You reasoning is in the correct direction, but there are three zeros in the input and you only seem to do the else logic for the last one. Keep in mind that the else clause is within the loop too. Try processing the input until each of them one by one.

Related

Euler18 dynamic algorithm

Given the array [5, 4, 12, 3, 11, 7, 2, 8, 1, 9] that forms a triangle like so:
5
4 12
3 11 7
2 8 1 9
Result should be 5 + 12 + 7 + 9 = 31.
Write a function that will traverse the triangle and find the largest possible sum of values when you can go from one point to either directly bottom left, or bottom right.
Refering to the dynamic algorithm in that link:
http://www.mathblog.dk/project-euler-18/
Result is 36.
5
4 12
3 11 7
2 8 1 9
5
4 12
11 19 16
5
23 31
36
Where is my mistake ??
The description of Problem 18 starts with an example where the optimal path is “left-right-right”. So you get a new choice of direction after every step, which means that after taking the first step to the right, you are still free to take the second step to the left and eventually come up with 5+12+11+8=36 as the optimal solution in your example, larger than the 31 you assumed. So the computation is correct in solving the problem as described. Your assumption about choosing a direction only once and then sticking with that choice would lead to a different (and rather boring) problem.

Matrix coil (serpentine)

there!
I have a problem in java to generate a matrix like this :
When n= 4
{{1 4 5 16},
{2 3 6 15},
{9 8 7 14},
{10 11 12 13}};
Matrix shoud contain numbers from 1 to n*n.
I do not want any code, I just want to see how the matrix looks like when n=5 and n=6.
I have searched on the internet and found just about the spiral matrix, but not this one.
Thank you!
I think the production rule of this matrix is to start in the top left corner, then fill it in the smallest possible loop by starting counter-clockwise, switching between clockwise and counter-clockwise as soon as the boundary is met.
So, for n = 5 it would look like this:
{{ 1 4 5 16 17},
{ 2 3 6 15 18},
{ 9 8 7 14 19},
{10 11 12 13 20},
{25 24 23 22 21}};
And for n = 6 it would look like this:
{{ 1 4 5 16 17 36},
{ 2 3 6 15 18 35},
{ 9 8 7 14 19 34},
{10 11 12 13 20 33},
{25 24 23 22 21 32},
{26 27 28 29 30 31}};
There are some interesting invariants.
In the first row, every second entry is the square of an even, starting with 4 (2).
In the first column, every second entry is the square of an odd, starting with 1 (1).
The production of the diagonal is F(n) := n == 1 ? 1 : F(n-1) + 2(n-1)
Nice stuff, have fun programming with it.

Insertion into a binary heap

If I have an array representing a minimum binary heap that contains the values {2, 8, 3, 10, 16, 7, 18, 13, 15}, what would the array look like after inserting the value of 4? Also, how would I demonstrate this to be correct?
I deduced it would be 2,4,3,10,8,7,18,13,15,16. Is that correct?
To demonstrate that your min heap is correct, you need to prove recursively that your child nodes are larger than your root node
If your root node is n, your child nodes are 2n+1 and 2n+2, so iterate through your tree and check if child nodes are greater than parent. If this logic is not satisfied anywhere then your heap is bad.
2
8 3
10 16 7 18
13 15
push at end
2
8 3
10 **16** 7 18
13 15 4
compare and replace with parent
2
**8** 3
10 4 7 18
13 15 16
compare and replace with parent-no replacement
**2**
4 3
10 8 7 18
13 15 16

Binary Search in C++ with array

Here is an array with exactly 15 elements:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Suppose that we are doing a binary search for an element. Indicate any elements that will be found by examining two or fewer numbers from the array.
What I've got: as we are doing binary search, so the number found by only one comparison will be 7th element = 7. For two comparison, this leads to second division of array. That is, number found can be either 3 or 11.
Am I right or not?
You are almost right, the first number is not seven but eight.
The others 2 will then be 4 and 12.
The correct answer would be 4, 8, 12
`I found the answer to be 8 that is the 7th element, the other elements found were 3.5th and 10.5th element of the sorted array. So, the next two numbers delved are 4 and 11.
explanation on how i got the answers.
given array is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
head=1
tail=15
middle= 0+14/2=7th element **0 is the index value of 1 and 14 is of 15**
middle value turns to be 8 as it is the 7th element.
solving value for first half
head=1
tail=8
middle= 0+7/2=3.5 or 3rd element **0 is the index value of 1 and 7 is of 8**
middle value now turns to be 4 as it is the 3rd element.
solving value for second half
head=8
tail=15
middle= 7+14/2=10.5 or 10th element **7 is the index value of 8 and 14 is
of 15**
middle value now turns to be 11 as it is the 10th element of the array`
Blockquote

Quicksort algorithm

I used the quicksort algorithm to sort
11 8 9 4 2 5 3 12 6 10 7
and I got the list:
4 3 2 5 9 11 8 12 6 10 7.
5 was used as a pivot. Now I am stuck. How do I proceed to sort the lowersublist and the uppersublist?
pivot=5 11 8 9 4 2 5 3 12 6 10 7
Move pivot to position 0 5 8 9 4 2 11 3 12 6 10 7
i (position 1 = 8)
j (position 6 = 3) ⇒ swap 8 and 3 5 3 9 4 2 11 8 12 6 10 7
i (position 2 = 9)
j (position 4 = 2) ⇒ swap 9 and 2 5 3 2 4 9 11 8 12 6 10 7
i (position 3 = 4)
– no smaller elements than 5 ⇒ swap 5 and 4 4 3 2 5 9 11 8 12 6 10 7
– list after the partition
Quicksort is a recursive algorithm. Once you have sorted the elements by the pivot, you get two sets of items. The first with all elements smaller or equal to the pivot, and the second with all elements larger than the pivot. What you do now, is that you apply quicksort again to each of these sets (with an appropriate pivot).
To do this, you will have to choose a new pivot every time. You can do something like always pick the first element, or draw one at random.
Once you reach a point where a set contains only one element, you stop.
A good way to understand these things is to try to sort a deck of cards using this algorithm. All cards are face down, and you are only allowed to look at two cards at a time, compare these and switch them if necessary. You must pretend to not remember any of the cards that are face down for that to work.
A key component of the algorithm is that the chosen pivot value came from the original list, which means (in your case) the element with the value 5 is now in the correct final position after the first partitioning:
4 3 2 5 9 11 8 12 6 10 7
This should be fairly obvious and follows simple intuition. If every element to the left of an item is smaller than that item and every element to the right is larger, then the item must be in the correct, sorted position.
The insight necessary to understanding the entire Quicksort algorithm is that you can just keep doing this to each of the sublists -- the list of values to the left of the pivot and the list containing all values to the right -- to arrive at the final, sorted list. This is because:
Each partitioning puts one more element in its proper position
Each iteration removes one element -- the pivot -- from the list of elements left to process (which is why we'll eventually reach the base case of zero (or one, depending on how you do it) elements)
Let's assume you chose the partition value of 5 based on the following pseudo-code:
Math.floor(list.length / 2)
For our purposes, the actual choice of a pivot doesn't really matter. This one works for your orginal choice, so we'll go with it. Now, let's play this out 'till the end (starting where you left off):
concat(qs([4 3 2]), 5, qs([9 11 8 12 6 10 7])) =
concat(qs([2]), 3, qs([4]), 5, qs([9, 11, 8, 6, 10, 7]), 12, qs([])) =
concat(2, 3, 4, 5, qs([6, 7]), 8, qs([9, 11, 10]), 12) =
concat(2, 3, 4, 5, qs([6]), 7, qs([]), 8, qs([9, 10]), 11, qs([]), 12) =
concat(2, 3, 4, 5, 6, 7, 8, qs([9]), 10, qs([]), 11, 12) =
concat(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
Note that each time you see a single call to qs it will follow this pattern:
qs(<some_left_list>), <the_pivot>, qs(<some_right_list>)
And each call of qs on one line results in two more such calls on the following line (representing the processing of both new sublists (except note that I immediately decompose calls to qs on single-value lists)).
It's a good idea to go through this exercise yourself. Yes, with actual pen and paper.

Resources