Unable to compile simple C++ program - c++11

I was following a C++ tutorial and when trying to compile the second exercise I got this awesome result:
It's a never ending scroll of code and nothing else happens.
The code I'm using for compiling is:
cpp Small.cpp
...and the code of the file is :
#include <iostream>
int main(){
std::cout << "Hello!" << std::endl << 2+2;
return 0;
}
I have no idea how to even start searching for this error.
The compiler is the latest MinGW for Windows.
Edit: What I could recover:
{
template<typename _Tp>
static _Tp*
__copy_move_b(const _Tp* __first, const _Tp* __last, _Tp* __result)
{
const ptrdiff_t _Num = __last - __first;
if (_Num)
__builtin_memmove(__result - _Num, __first, sizeof(_Tp) * _Num);
return __result - _Num;
}
};
template<bool _IsMove, typename _BI1, typename _BI2>
inline _BI2
__copy_move_backward_a(_BI1 __first, _BI1 __last, _BI2 __result)
{
typedef typename iterator_traits<_BI1>::value_type _ValueType1;
typedef typename iterator_traits<_BI2>::value_type _ValueType2;
typedef typename iterator_traits<_BI1>::iterator_category _Category;
const bool __simple = (__is_trivial(_ValueType1)
&& __is_pointer<_BI1>::__value
&& __is_pointer<_BI2>::__value
&& __are_same<_ValueType1, _ValueType2>::__value);
return std::__copy_move_backward<_IsMove, __simple,
_Category>::__copy_move_b(__first,
__last,
__result);
}
template<bool _IsMove, typename _BI1, typename _BI2>
inline _BI2
__copy_move_backward_a2(_BI1 __first, _BI1 __last, _BI2 __result)
{
return _BI2(std::__copy_move_backward_a<_IsMove>
(std::__niter_base(__first), std::__niter_base(__last),
std::__niter_base(__result)));
}
# 617 "c:\\tdm-gcc-32\\lib\\gcc\\mingw32\\4.8.1\\include\\c++\\bits\\stl_algoba
e.h" 3
template<typename _BI1, typename _BI2>
inline _BI2
copy_backward(_BI1 __first, _BI1 __last, _BI2 __result)
{
;
return (std::__copy_move_backward_a2<__is_move_iterator<_BI1>::__value>
(std::__miter_base(__first), std::__miter_base(__last),
__result));
}
# 675 "c:\\tdm-gcc-32\\lib\\gcc\\mingw32\\4.8.1\\include\\c++\\bits\\stl_algoba
e.h" 3
template<typename _ForwardIterator, typename _Tp>
inline typename
__gnu_cxx::__enable_if<!__is_scalar<_Tp>::__value, void>::__type
__fill_a(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __value)
{
for (; __first != __last; ++__first)
*__first = __value;
}
template<typename _ForwardIterator, typename _Tp>
inline typename
__gnu_cxx::__enable_if<__is_scalar<_Tp>::__value, void>::__type
__fill_a(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __value)
{
const _Tp __tmp = __value;
for (; __first != __last; ++__first)
*__first = __tmp;
}
template<typename _Tp>
inline typename
__gnu_cxx::__enable_if<__is_byte<_Tp>::__value, void>::__type
__fill_a(_Tp* __first, _Tp* __last, const _Tp& __c)
{
const _Tp __tmp = __c;
__builtin_memset(__first, static_cast<unsigned char>(__tmp),
__last - __first);
}
# 719 "c:\\tdm-gcc-32\\lib\\gcc\\mingw32\\4.8.1\\include\\c++\\bits\\stl_algoba
e.h" 3
template<typename _ForwardIterator, typename _Tp>
inline void
fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value)
{
;
std::__fill_a(std::__niter_base(__first), std::__niter_base(__last),
__value);
}
template<typename _OutputIterator, typename _Size, typename _Tp>
inline typename
__gnu_cxx::__enable_if<!__is_scalar<_Tp>::__value, _OutputIterator>::__type
__fill_n_a(_OutputIterator __first, _Size __n, const _Tp& __value)
{
for (__decltype(__n + 0) __niter = __n;
__niter > 0; --__niter, ++__first)
*__first = __value;
return __first;
}
template<typename _OutputIterator, typename _Size, typename _Tp>
inline typename
__gnu_cxx::__enable_if<__is_scalar<_Tp>::__value, _OutputIterator>::__type
__fill_n_a(_OutputIterator __first, _Size __n, const _Tp& __value)
{
const _Tp __tmp = __value;
for (__decltype(__n + 0) __niter = __n;
__niter > 0; --__niter, ++__first)
*__first = __tmp;
return __first;
}
template<typename _Size, typename _Tp>
inline typename
__gnu_cxx::__enable_if<__is_byte<_Tp>::__value, _Tp*>::__type
__fill_n_a(_Tp* __first, _Size __n, const _Tp& __c)
{
std::__fill_a(__first, __first + __n, __c);
return __first + __n;
}
# 779 "c:\\tdm-gcc-32\\lib\\gcc\\mingw32\\4.8.1\\include\\c++\\bits\\stl_algoba
e.h" 3
template<typename _OI, typename _Size, typename _Tp>
inline _OI
fill_n(_OI __first, _Size __n, const _Tp& __value)
{
return _OI(std::__fill_n_a(std::__niter_base(__first), __n, __value));
}
template<bool _BoolType>
struct __equal
{
template<typename _II1, typename _II2>
static bool
equal(_II1 __first1, _II1 __last1, _II2 __first2)
{
for (; __first1 != __last1; ++__first1, ++__first2)
if (!(*__first1 == *__first2))
return false;
return true;
}
};
template<>
struct __equal<true>
{
template<typename _Tp>
static bool
equal(const _Tp* __first1, const _Tp* __last1, const _Tp* __first2)
{
return !__builtin_memcmp(__first1, __first2, sizeof(_Tp)
* (__last1 - __first1));
}
};
template<typename _II1, typename _II2>
inline bool
__equal_aux(_II1 __first1, _II1 __last1, _II2 __first2)
{
typedef typename iterator_traits<_II1>::value_type _ValueType1;
typedef typename iterator_traits<_II2>::value_type _ValueType2;
const bool __simple = ((__is_integer<_ValueType1>::__value
|| __is_pointer<_ValueType1>::__value)
&& __is_pointer<_II1>::__value
&& __is_pointer<_II2>::__value
&& __are_same<_ValueType1, _ValueType2>::__value);
return std::__equal<__simple>::equal(__first1, __last1, __first2);
}
template<typename, typename>
struct __lc_rai
{
template<typename _II1, typename _II2>
static _II1
__newlast1(_II1, _II1 __last1, _II2, _II2)
{ return __last1; }
template<typename _II>
static bool
__cnd2(_II __first, _II __last)
{ return __first != __last; }
};
template<>
struct __lc_rai<random_access_iterator_tag, random_access_iterator_tag>
{
template<typename _RAI1, typename _RAI2>
static _RAI1
__newlast1(_RAI1 __first1, _RAI1 __last1,
_RAI2 __first2, _RAI2 __last2)
{
const typename iterator_traits<_RAI1>::difference_type
__diff1 = __last1 - __first1;
const typename iterator_traits<_RAI2>::difference_type
__diff2 = __last2 - __first2;
return __diff2 < __diff1 ? __first1 + __diff2 : __last1;
}
template<typename _RAI>
static bool
__cnd2(_RAI, _RAI)
{ return true; }
};
template<bool _BoolType>
struct __lexicographical_compare
{
template<typename _II1, typename _II2>
static bool __lc(_II1, _II1, _II2, _II2);
};
template<bool _BoolType>
template<typename _II1, typename _II2>
bool
__lexicographical_compare<_BoolType>::
__lc(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2)
{
typedef typename iterator_traits<_II1>::iterator_category _Category1;
typedef typename iterator_traits<_II2>::iterator_category _Category2;
typedef std::__lc_rai<_Category1, _Category2> __rai_type;
__last1 = __rai_type::__newlast1(__first1, __last1,
__first2, __last2);
for (; __first1 != __last1 && __rai_type::__cnd2(__first2, __last2);
++__first1, ++__first2)
{
if (*__first1 < *__first2)
return true;
if (*__first2 < *__first1)
return false;
}
return __first1 == __last1 && __first2 != __last2;
}
template<>
struct __lexicographical_compare<true>
{
template<typename _Tp, typename _Up>
static bool
__lc(const _Tp* __first1, const _Tp* __last1,
const _Up* __first2, const _Up* __last2)
{
const size_t __len1 = __last1 - __first1;
const size_t __len2 = __last2 - __first2;
const int __result = __builtin_memcmp(__first1, __first2,
std::min(__len1, __len2));
return __result != 0 ? __result < 0 : __len1 < __len2;
}
};
template<typename _II1, typename _II2>
inline bool
__lexicographical_compare_aux(_II1 __first1, _II1 __last1,
_II2 __first2, _II2 __last2)
{
typedef typename iterator_traits<_II1>::value_type _ValueType1;
typedef typename iterator_traits<_II2>::value_type _ValueType2;
const bool __simple =
(__is_byte<_ValueType1>::__value && __is_byte<_ValueType2>::__value
&& !__gnu_cxx::__numeric_traits<_ValueType1>::__is_signed
&& !__gnu_cxx::__numeric_traits<_ValueType2>::__is_signed
&& __is_pointer<_II1>::__value
&& __is_pointer<_II2>::__value);
return std::__lexicographical_compare<__simple>::__lc(__first1, __last1,
__first2, __last2);
}
# 941 "c:\\tdm-gcc-32\\lib\\gcc\\mingw32\\4.8.1\\include\\c++\\bits\\stl_algoba
e.h" 3
template<typename _ForwardIterator, typename _Tp>
_ForwardIterator
lower_bound(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __val)
{
typedef t

"cpp" stands for C PreProcessor. You are visualizing the preprocessed version of your program, and the source code of the iostream header it includes (and recursively).

As user685684 suggested in a comment, replacing "cpp small.cpp" for "c++ small.cpp" fixed the problem and the weird error is no longer happening.

Related

Explicitly Asking for Default Move Constructor Does not Work?

Here is my code:
#include <cstdint>
#include <vector>
class Bar {
uint32_t m_value;
public:
Bar(const uint32_t value) : m_value(value) {
}
};
class Foo {
Bar* m_p_bar;
uint32_t m_value;
Foo(const Foo&) = delete;
Foo& operator=(const Foo&) = delete;
Foo& operator=(Foo&&) = default;
Foo(Foo&&) = default;
public:
/*
Foo(Foo&& from) {
m_p_bar = from.m_p_bar;
m_value = from.m_value;
from.m_p_bar = nullptr;
}
*/
Foo(const uint32_t value) : m_value(value) {
m_p_bar = new Bar(value);
}
};
int main() {
std::vector<Foo> foos;
foos.emplace_back(8);
}
Compiler complains:
In file included from /opt/rh/devtoolset-9/root/usr/include/c++/9/vector:66,
from test_implicit_func.cpp:2:
/opt/rh/devtoolset-9/root/usr/include/c++/9/bits/stl_uninitialized.h: In instantiation of ‘_ForwardIterator std::uninitialized_copy(_InputIterator, _InputIterator, _ForwardIterator) [with _InputIterator = std::move_iterator<Foo*>; _ForwardIterator = Foo*]’:
/opt/rh/devtoolset-9/root/usr/include/c++/9/bits/stl_uninitialized.h:307:37: required from ‘_ForwardIterator std::__uninitialized_copy_a(_InputIterator, _InputIterator, _ForwardIterator, std::allocator<_Tp>&) [with _InputIterator = std::move_iterator<Foo*>; _ForwardIterator = Foo*; _Tp = Foo]’
/opt/rh/devtoolset-9/root/usr/include/c++/9/bits/stl_uninitialized.h:329:2: required from ‘_ForwardIterator std::__uninitialized_move_if_noexcept_a(_InputIterator, _InputIterator, _ForwardIterator, _Allocator&) [with _InputIterator = Foo*; _ForwardIterator = Foo*; _Allocator = std::allocator<Foo>]’
/opt/rh/devtoolset-9/root/usr/include/c++/9/bits/vector.tcc:474:3: required from ‘void std::vector<_Tp, _Alloc>::_M_realloc_insert(std::vector<_Tp, _Alloc>::iterator, _Args&& ...) [with _Args = {int}; _Tp = Foo; _Alloc = std::allocator<Foo>; std::vector<_Tp, _Alloc>::iterator = __gnu_cxx::__normal_iterator<Foo*, std::vector<Foo> >; typename std::_Vector_base<_Tp, _Alloc>::pointer = Foo*]’
/opt/rh/devtoolset-9/root/usr/include/c++/9/bits/vector.tcc:121:4: required from ‘std::vector<_Tp, _Alloc>::reference std::vector<_Tp, _Alloc>::emplace_back(_Args&& ...) [with _Args = {int}; _Tp = Foo; _Alloc = std::allocator<Foo>; std::vector<_Tp, _Alloc>::reference = Foo&]’
test_implicit_func.cpp:34:21: required from here
/opt/rh/devtoolset-9/root/usr/include/c++/9/bits/stl_uninitialized.h:127:72: error: static assertion failed: result type must be constructible from value type of input range
127 | static_assert(is_constructible<_ValueType2, decltype(*__first)>::value,
| ^~~~~
I noticed that for some reason, I need to define my own move constructor for Foo. By explicitly asking the compiler to use the default one (i.e. Foo(Foo&&) = default;), it doesn't work. However, if I ask the compiler to use all the implicit ones (i.e. removing Foo(const Foo&) = delete; Foo& operator=(const Foo&) = delete; Foo& operator=(Foo&&) = default; Foo(Foo&&) = default;), then compiler doesn't complain.
My question is why explicitly asking compiler to use the default move constructor here doesn't work but it works in this case. And this answer suggests I could ask for a default version if it is implicitly removed.
If you let the compiler use the implicitly defined "big 5" you will have problems with leaks and double free:s.
You need to make the move constructor public and you need to delete the pointer in the destructor. You also need to make sure not to leave the pointer in the moved-from object.
#include <utility> // exchange
class Foo {
Bar* m_p_bar;
uint32_t m_value;
public:
Foo(const uint32_t value) :
m_p_bar(new Bar(value)),
m_value(value)
{}
Foo(const Foo&) = delete;
Foo& operator=(const Foo&) = delete;
Foo(Foo&& rhs) :
m_p_bar(std::exchange(rhs.m_p_bar, nullptr)), // put a nullptr in rhs
m_value(rhs.m_value)
{}
Foo& operator=(Foo&& rhs) {
std::swap(m_p_bar, rhs.m_p_bar); // let rhs destroy our current Bar
m_value = rhs.m_value;
return *this;
}
~Foo() { delete m_p_bar; } // destroy it
};
A better idea would be to use a std::unique_ptr<Bar> - or to not use a pointer at all.

Find boost multi index Tag to index and number of indices

I have a template class(CrMultiIndex) that receive as template parameter a definition of boost multi index(GlobalHash).
I need :
To add statistics to my template class according to Index used.
So i need a way to resize the vector(m_StatsByIndex) at init with the number of existing indices.
I still want the user to search according to tag and not index number.
So i need a way to convert from tag to index number so i can update statistics in vector according to index in vector.
I have template class
template <typename KeysType, typename MultiIndexType>
class CrMultiIndex
{
std::vector<SrStatisticsByIndex> m_StatsByIndex;
public:
MultiIndexType *m_pMultiIndex=NULL;
CrMultiIndex()
{
m_pMultiIndex = new MultiIndexType(typename
MultiIndexType::ctor_args_list());
}
Here is the definition of boost multi index container:
typedef boost::multi_index::multi_index_container<
CrUsersKeys,
UsersKey_hash_indices/*,
bip::allocator<CrUsersKeys,bip::managed_shared_memory::segment_manager>*/
> GlobalHash;
with a search function according to Tag
template <typename TagType,typename SearchingKey>
typename MultiIndexType::template index<TagType>::type::iterator
GetIteratorBy(SearchingKey & key)
{
return m_pMultiIndex->template get<TagType>().find(key) ;
}
Code is at http://coliru.stacked-crooked.com/a/d97195a6e4bb7ad4
You'd need to query the embedded index type lists:
typedef typename MultiIndexType::index_type_list::size NumberOfIndexes;
template <typename Tag> constexpr static size_t IndexOfTag() {
namespace mpl = boost::mpl;
using tl = typename MultiIndexType::index_type_list;
using B = typename mpl::begin<tl>::type;
using helper = typename MultiIndexType::template index<Tag>;
static_assert(helper::index_found, "index not found");
auto N = mpl::distance<B, typename helper::iter>::value;
return N;
}
Or, using Boost Mpl all the way:
typedef typename MultiIndexType::index_type_list::size NumberOfIndexes;
template <typename Tag> constexpr static size_t IndexOfTag() {
namespace mpl = boost::mpl;
using tl = typename MultiIndexType::index_type_list;
using B = typename mpl::begin<tl>::type;
using E = typename mpl::end<tl>::type;
using It = typename mpl::find_if<tl, bmi::detail::has_tag<Tag> >::type;
static_assert(not std::is_same<E, It>(), "index not found");
auto N = mpl::distance<B, It>::value;
return N;
}
You can use it like so:
template <typename TagType, typename SearchingKey>
typename MultiIndexType::template index<TagType>::type::iterator
GetIteratorBy(SearchingKey &key) {
auto& idx = m_pMultiIndex.template get<TagType>();
auto& stats = GetStats<TagType>();
auto it = idx.find(key);
++(it == idx.end()? stats.searchedNotFound : stats.searchedSuccessfully);
return it;
}
DEMO
Note the code has been simplified:
Live On Coliru
#include <iostream>
#include <boost/multi_index/member.hpp> // for member
#include <boost/multi_index/hashed_index.hpp> // for hashed_unique
#include <boost/multi_index/ordered_index.hpp> // for ordered_non_unique
#include <boost/multi_index_container.hpp> // for multi_index_container
namespace bmi = boost::multi_index;
struct SrStatisticsByIndex {
int deleted;
int searchedSuccessfully;
int searchedNotFound;
};
template <typename MultiIndexType, typename ValueType = typename MultiIndexType::value_type>
class CrMultiIndex {
typedef typename MultiIndexType::index_type_list::size NumberOfIndexes;
template <typename Tag> constexpr static size_t IndexOfTag() {
using tl = typename MultiIndexType::index_type_list;
using B = typename boost::mpl::begin<tl>::type;
using helper = typename MultiIndexType::template index<Tag>;
static_assert(helper::index_found, "index not found");
return boost::mpl::distance<B, typename helper::iter>::value;
}
public:
MultiIndexType m_pMultiIndex;
template <typename Tag> SrStatisticsByIndex& GetStats()
{ return m_StatsByIndex.at(IndexOfTag<Tag>()); }
template <typename Tag> SrStatisticsByIndex const& GetStats() const
{ return m_StatsByIndex.at(IndexOfTag<Tag>()); }
// All the protected function are non locking function
template <typename TagType, typename SearchingKey>
typename MultiIndexType::template index<TagType>::type::iterator
GetIteratorBy(SearchingKey &key) {
auto& idx = m_pMultiIndex.template get<TagType>();
auto& stats = GetStats<TagType>();
auto it = idx.find(key);
++(it == idx.end()? stats.searchedNotFound : stats.searchedSuccessfully);
return it;
}
void Insert(ValueType const &key) {
std::cout << (m_pMultiIndex.insert(key).second? "success":"failed") << std::endl;
}
private:
std::vector<SrStatisticsByIndex> m_StatsByIndex { NumberOfIndexes() };
};
class CrUsersValue {
int val1;
int val2;
};
class CrUsersKeys {
public:
int IMSI;
int TIMESTAMP;
CrUsersValue val;
};
typedef boost::multi_index::multi_index_container<
CrUsersKeys,
bmi::indexed_by<
bmi::ordered_non_unique<bmi::tag<struct TIMESTAMP_tag>,
bmi::member<CrUsersKeys, int, &CrUsersKeys::TIMESTAMP> >,
bmi::hashed_unique<bmi::tag<struct IMSI_tag>,
bmi::member<CrUsersKeys, int, &CrUsersKeys::IMSI> /*, boost::hash<int>, std::equal_to<int>*/>
>
/*, bip::allocator<CrUsersKeys,bip::managed_shared_memory::segment_manager>*/
>
GlobalHash;
int main() {
CrMultiIndex<GlobalHash> multi;
CrUsersKeys key;
key.IMSI = 2;
multi.Insert(key);
int searchKey = 2;
auto it = multi.GetIteratorBy<IMSI_tag>(searchKey);
if (it != multi.m_pMultiIndex.get<IMSI_tag>().end())
std::cout << "found " << std::endl;
}
Prints
success
found
As a supplement to sehe's answer, this a rewrite of IndexOfTag that does not depend on undocumented Boost.MultiIndex features:
Live On Coliru
template<typename MultiIndexContainer,std::size_t N=0>
struct index_position:index_position<MultiIndexContainer,N+1>
{
using index_type=typename boost::multi_index::nth_index<MultiIndexContainer,N>::type;
using index_position<MultiIndexContainer,N+1>::case_of;
static constexpr std::size_t case_of(std::in_place_type_t<index_type>){return N;}
};
template<typename MultiIndexContainer>
struct index_position<
MultiIndexContainer,
boost::mpl::size<typename MultiIndexContainer::index_type_list>::value
>
{
static constexpr void case_of(...){}
};
template <typename MultiIndexContainer,typename Tag>
constexpr std::size_t IndexOfTag()
{
using index_type=typename boost::multi_index::index<MultiIndexContainer,Tag>::type;
return index_position<MultiIndexContainer>::case_of(std::in_place_type<index_type>);
}
Edit: In C++14:
Live On Coliru
template<typename MultiIndexContainer,std::size_t N=0>
struct index_position:index_position<MultiIndexContainer,N+1>
{
using index_type=typename boost::multi_index::nth_index<MultiIndexContainer,N>::type;
using index_position<MultiIndexContainer,N+1>::case_of;
static constexpr std::size_t case_of(index_type*){return N;}
};
template<typename MultiIndexContainer>
struct index_position<
MultiIndexContainer,
boost::mpl::size<typename MultiIndexContainer::index_type_list>::value
>
{
static constexpr void case_of(...){}
};
template <typename MultiIndexContainer,typename Tag>
constexpr std::size_t IndexOfTag()
{
using index_type=typename boost::multi_index::index<MultiIndexContainer,Tag>::type;
return index_position<MultiIndexContainer>::case_of((index_type*)(nullptr));
}

How to use BGL’s adjacency_list with standard unorunordered_set as the out edges list template parameter

I’m trying to use boost’s graph library adjacency_list with C++11 unorunordered_set.
While using it as the second template argument (i.e. the vertex list) compiles fine, when trying to use it as the “out edges” types (the first template parameter) I get the following error:
“"The C++ Standard doesn't provide a hash for this type."
Here is the code at question:
#include <unordered_set>
#include <boost/config.hpp>
#include <boost/graph/adjacency_list.hpp>
struct NodeProperty{
std::string FirstName;
std::string LastName;
};
namespace std{
template<>
struct hash<NodeProperty>
{
std::hash<std::string> hasher;
size_t operator()(const NodeProperty& key) const
{
return hasher(key.FirstName) ^ hasher(key.LastName);
}
};
}
namespace boost {
struct std_unorunordered_setS{};
template <class ValueType>
struct container_gen<std_unorunordered_setS, ValueType> {
typedef std::unordered_set<ValueType> type;
};
template <>
struct parallel_edge_traits<std_unorunordered_setS> {
typedef disallow_parallel_edge_tag type;
};
}
using namespace boost;
int main(int, char*[])
{
typedef adjacency_list< std_unorunordered_setS, std_unorunordered_setS, bidirectionalS,
NodeProperty > Graph;
typedef graph_traits<Graph>::vertex_descriptor Vertex;
}
Many 10x,
Andrey
The out-edge list does use a implementation defined wrapper types.
If you read the message well, you can see you need the hash of something of a type-erased iterator wrapper. You need these specializations (stolen from detail/adjacency_list.hpp):
namespace std {
template <typename V> struct hash<boost::detail::stored_edge<V> > {
std::size_t operator()(const boost::detail::stored_edge<V> &e) const { return hash<V>()(e.m_target); }
};
template <typename V, typename P> struct hash<boost::detail::stored_edge_property<V, P> > {
std::size_t operator()(const boost::detail::stored_edge_property<V, P> &e) const { return hash<V>()(e.m_target); }
};
template <typename V, typename I, typename P> struct hash<boost::detail::stored_edge_iter<V, I, P> > {
std::size_t operator()(const boost::detail::stored_edge_iter<V, I, P> &e) const { return hash<V>()(e.m_target); }
};
}
CAVEAT: I'd just use the hash_setS selector that is built in (which uses boost::unordered_set). That way you won't depend on implementation details that are expressly not in the public headers.
Both flavours Live On Coliru
#include <unordered_set>
#include <boost/config.hpp>
#include <boost/graph/adjacency_list.hpp>
struct NodeProperty {
std::string FirstName;
std::string LastName;
};
namespace std {
template <> struct hash<NodeProperty> {
std::hash<std::string> hasher;
size_t operator()(const NodeProperty &key) const { return hasher(key.FirstName) ^ hasher(key.LastName); }
};
}
namespace std {
template <typename V> struct hash<boost::detail::stored_edge<V> > {
std::size_t operator()(const boost::detail::stored_edge<V> &e) const { return hash<V>()(e.m_target); }
};
template <typename V, typename P> struct hash<boost::detail::stored_edge_property<V, P> > {
std::size_t operator()(const boost::detail::stored_edge_property<V, P> &e) const { return hash<V>()(e.m_target); }
};
template <typename V, typename I, typename P> struct hash<boost::detail::stored_edge_iter<V, I, P> > {
std::size_t operator()(const boost::detail::stored_edge_iter<V, I, P> &e) const { return hash<V>()(e.m_target); }
};
}
namespace boost {
struct std_unordered_setS {};
template <class ValueType> struct container_gen<std_unordered_setS, ValueType> {
typedef std::unordered_set<ValueType> type;
};
template <> struct parallel_edge_traits<std_unordered_setS> { typedef disallow_parallel_edge_tag type; };
}
using namespace boost;
int main() {
#ifdef USE_STD
typedef adjacency_list<std_unordered_setS, std_unordered_setS, bidirectionalS, NodeProperty> Graph;
#else
typedef adjacency_list<hash_setS, hash_setS, bidirectionalS, NodeProperty> Graph;
#endif
// typedef graph_traits<Graph>::vertex_descriptor Vertex;
}

Ambiguous operator<< selection

I have some code which, very much simplified, looks somewhat like this:
#include <iostream>
#include <type_traits>
namespace X {
struct Foo {int x;};
struct Bar {int x;};
template <typename T , typename = typename std::enable_if<
std::is_same<decltype(T::x),int>::value
>::type>
std::ostream & operator<<(std::ostream & os, const T&) {
return os;
}
}
namespace Y {
struct Faa : X::Foo {int y;};
struct Baz {int x; int y;};
template <typename T , typename = typename std::enable_if<
std::is_same<decltype(T::x),int>::value &&
std::is_same<decltype(T::y),int>::value
>::type>
std::ostream & operator<<(std::ostream & os, const T&) {
return os;
}
}
int main() {
// Everything is ok
X::Foo x;
std::cout << x;
Y::Baz k;
std::cout << k;
// Problems..
Y::Faa y;
// std::cout << y; // <--operator is ambiguous
Y::operator<<(std::cout, y);
return 0;
}
Is there any way to avoid the ambiguous operator for Y::Faa and having to manually specify Y::operator<<? If not, why?
Two functions have a conflict because conditions on their arguments have non-empty intersection (actually, 1st supersedes 2nd). Function overloading works only if signatures are different. So, to solve this we have 2 options:
Change conditions so that they have empty intersection (manually forbid having y field by adding && !sfinae_has_member_y<T>::value condition to the 1st enable_if)
template<typename T>
struct sfinae_has_member_y {
static int has(...);
template<typename U = T, typename = decltype(U::y)>
static char has(const U& value);
enum { value = sizeof(char) == sizeof(has(std::declval<T>())) };
};
OR use another C++ feature that supports arguments overlapping, like struct/class template specialization. If you replace bool with int, other fields may be added too:
template<typename T, bool>
struct Outputter {
};
template<typename T>
struct Outputter<T, false> {
static std::ostream & output(std::ostream & os, const T&) {
os << "x";
return os;
}
};
template<typename T>
struct Outputter<T, true> {
static std::ostream & output(std::ostream & os, const T&) {
os << "y";
return os;
}
};
template<typename T, typename = std::enable_if_t<std::is_same<decltype(T::x), int>::value>>
std::ostream & operator<<(std::ostream & os, const T& a) {
return Outputter<T, sfinae_has_member_y<T>::value>::output(os, a);
}

More issues with pool allocator with free list

In std::map, this ends up causing an error when the first object is constructed. I've checked the debugger, and I see that free_list::init() creates the consecutive memory addresses correctly. I'm aware this allocator cannot be used in vector or other related containers, but it's only meant to work with the nodular containers.
I get a run-time error from this in xutility (in VC12), at line 158:
_Container_proxy *_Parent_proxy = _Parent->_Myproxy;
Checking the debugger, it appears that _Parent was never initialized, bringing about the 0xC0000005 run-time error. Why or how it didn't get initialized and why this occurred when the first object was being constructed (after std::map did 3 separate allocations), I do not know.
I would like to have this work with std::map and std::list and the other nodular containers and am not worried about whether it can perform in std::vector, etc.
#include <algorithm>
class free_list {
public:
free_list() {}
free_list(free_list&& other)
: m_next(other.m_next) {
other.m_next = nullptr;
}
free_list(void* data, std::size_t num_elements, std::size_t element_size) {
init(data, num_elements, element_size);
}
free_list& operator=(free_list&& other) {
m_next = other.m_next;
other.m_next = nullptr;
}
void init(void* data, std::size_t num_elements, std::size_t element_size) {
union building {
void* as_void;
char* as_char;
free_list* as_self;
};
building b;
b.as_void = data;
m_next = b.as_self;
b.as_char += element_size;
free_list* runner = m_next;
for (std::size_t s = 1; s < num_elements; ++s) {
runner->m_next = b.as_self;
runner = runner->m_next;
b.as_char += element_size;
}
runner->m_next = nullptr;
}
free_list* obtain() {
if (m_next == nullptr) {
return nullptr;
}
free_list* head = m_next;
m_next = head->m_next;
return head;
}
void give_back(free_list* ptr) {
ptr->m_next = m_next;
m_next = ptr;
}
free_list* m_next;
};
template<class T>
class pool_alloc {
typedef pool_alloc<T> myt;
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T* pointer;
typedef const T* const_pointer;
typedef std::false_type propagate_on_container_copy_assignment;
typedef std::true_type propagate_on_container_move_assignment;
typedef std::true_type propagate_on_container_swap;
template<class U> struct rebind {
typedef pool_alloc<U> other;
};
~pool_alloc() {
destroy();
}
pool_alloc() : data(nullptr), fl(), capacity(4096) {
}
pool_alloc(size_type capacity) : data(nullptr), fl(), capacity(capacity) {}
pool_alloc(const myt& other)
: data(nullptr), fl(), capacity(other.capacity) {}
pool_alloc(myt&& other)
: data(other.data), fl(std::move(other.fl)), capacity(other.capacity) {
other.data = nullptr;
}
template<class U>
pool_alloc(const pool_alloc<U>& other)
: data(nullptr), fl(), capacity(other.max_size()) {}
myt& operator=(const myt& other) {
destroy();
capacity = other.capacity;
}
myt& operator=(myt&& other) {
destroy();
data = other.data;
other.data = nullptr;
capacity = other.capacity;
fl = std::move(other.fl);
}
static pointer address(reference ref) {
return &ref;
}
static const_pointer address(const_reference ref) {
return &ref;
}
size_type max_size() const {
return capacity;
}
pointer allocate(size_type) {
if (data == nullptr) create();
return reinterpret_cast<pointer>(fl.obtain());
}
void deallocate(pointer ptr, size_type) {
fl.give_back(reinterpret_cast<free_list*>(ptr));
}
template<class... Args>
static void construct(pointer ptr, Args&&... args) {
::new (ptr) T(std::forward<Args>(args)...);
}
static void destroy(pointer ptr) {
ptr->~T();
}
bool operator==(const myt& other) const {
return reinterpret_cast<char*>(data) ==
reinterpret_cast<char*>(other.data);
}
bool operator!=(const myt& other) const {
return !operator==(other);
}
private:
void create() {
data = ::operator new(capacity * sizeof(value_type));
fl.init(data, capacity, sizeof(value_type));
}
void destroy() {
::operator delete(data);
data = nullptr;
}
void* data;
free_list fl;
size_type capacity;
};
template<>
class pool_alloc < void > {
public:
template <class U> struct rebind { typedef pool_alloc<U> other; };
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
};
The problem comes when std::pair is being constructed (in MSVC12 utility at line 214):
template<class _Other1,
class _Other2,
class = typename enable_if<is_convertible<_Other1, _Ty1>::value
&& is_convertible<_Other2, _Ty2>::value,
void>::type>
pair(_Other1&& _Val1, _Other2&& _Val2)
_NOEXCEPT_OP((is_nothrow_constructible<_Ty1, _Other1&&>::value
&& is_nothrow_constructible<_Ty2, _Other2&&>::value))
: first(_STD forward<_Other1>(_Val1)),
second(_STD forward<_Other2>(_Val2))
{ // construct from moved values
}
Even after stepping in, the run-time error occurs, the same as described above with _Parent not being initialized.
I was able to answer my own question through extensive debugging. Apparently, VC12's std::map implementation at least at times will cast an _Alnod (permanent allocator that stays in scope for the life of the map, which is used to allocate and deallocate the nodes in the map, what I'd expect to be what actually calls allocate() and deallocate()) as an _Alproxy, a temporary allocator which creates some sort of object called _Mproxy (or something like that) using allocate(). The problem, though, is that VC12's implementation then lets _Alproxy go out of scope while still expecting the pointer to the allocated object to remain valid, so it is clear then that I would have to use ::operator new and ::operator delete on an object like _Mproxy: using a memory pool that then goes out of scope while a pointer to a location in it remains is what causes the crash.
I came up with what I suppose could be called a dirty trick, a test that is performed when copy-constructing or copy-assigning an allocator to another allocator type:
template<class U>
pool_alloc(const pool_alloc<U>& other)
: data(nullptr), fl(), capacity(other.max_size()), use_data(true) {
if (sizeof(T) < sizeof(U)) use_data = false;
}
I added the bool member use_data to the allocator class, which if true means to use the memory pool and which if false means to use ::operator new and ::operator delete. By default, it is true. The question of its value arises when the allocator gets cast as another allocator type whose template parameter's size is smaller than that of the source allocator; in that case, use_data is set to false. Because this _Mproxy object or whatever it's called is rather small, this fix seems to work, even when using std::set with char as the element type.
I've tested this using std::set with type char in both VC12 and GCC 4.8.1 in 32-bit and have found that in both cases it works. When allocating and deallocating the nodes in both cases, the memory pool is used.
Here is the full source code:
#include <algorithm>
class free_list {
public:
free_list() {}
free_list(free_list&& other)
: m_next(other.m_next) {
other.m_next = nullptr;
}
free_list(void* data, std::size_t num_elements, std::size_t element_size) {
init(data, num_elements, element_size);
}
free_list& operator=(free_list&& other) {
if (this != &other) {
m_next = other.m_next;
other.m_next = nullptr;
}
return *this;
}
void init(void* data, std::size_t num_elements, std::size_t element_size) {
union building {
void* as_void;
char* as_char;
free_list* as_self;
};
building b;
b.as_void = data;
m_next = b.as_self;
b.as_char += element_size;
free_list* runner = m_next;
for (std::size_t s = 1; s < num_elements; ++s) {
runner->m_next = b.as_self;
runner = runner->m_next;
b.as_char += element_size;
}
runner->m_next = nullptr;
}
free_list* obtain() {
if (m_next == nullptr) {
return nullptr;
}
free_list* head = m_next;
m_next = head->m_next;
return head;
}
void give_back(free_list* ptr) {
ptr->m_next = m_next;
m_next = ptr;
}
free_list* m_next;
};
template<class T>
class pool_alloc {
typedef pool_alloc<T> myt;
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T* pointer;
typedef const T* const_pointer;
typedef std::false_type propagate_on_container_copy_assignment;
typedef std::true_type propagate_on_container_move_assignment;
typedef std::true_type propagate_on_container_swap;
myt select_on_container_copy_construction() const {
return *this;
}
template<class U> struct rebind {
typedef pool_alloc<U> other;
};
~pool_alloc() {
clear();
}
pool_alloc() : data(nullptr), fl(), capacity(4096), use_data(true) {}
pool_alloc(size_type capacity) : data(nullptr), fl(),
capacity(capacity), use_data(true) {}
pool_alloc(const myt& other)
: data(nullptr), fl(), capacity(other.capacity),
use_data(other.use_data) {}
pool_alloc(myt&& other)
: data(other.data), fl(std::move(other.fl)), capacity(other.capacity),
use_data(other.use_data) {
other.data = nullptr;
}
template<class U>
pool_alloc(const pool_alloc<U>& other)
: data(nullptr), fl(), capacity(other.max_size()), use_data(true) {
if (sizeof(T) < sizeof(U)) use_data = false;
}
myt& operator=(const myt& other) {
if (*this != other) {
clear();
capacity = other.capacity;
use_data = other.use_data;
}
}
myt& operator=(myt&& other) {
if (*this != other) {
clear();
data = other.data;
other.data = nullptr;
capacity = other.capacity;
use_data = other.use_data;
fl = std::move(other.fl);
}
return *this;
}
template<class U>
myt& operator=(const pool_alloc<U>& other) {
if (this != reinterpret_cast<myt*>(&other)) {
capacity = other.max_size();
if (sizeof(T) < sizeof(U))
use_data = false;
else
use_data = true;
}
return *this;
}
static pointer address(reference ref) {
return &ref;
}
static const_pointer address(const_reference ref) {
return &ref;
}
size_type max_size() const {
return capacity;
}
pointer allocate(size_type) {
if (use_data) {
if (data == nullptr) create();
return reinterpret_cast<pointer>(fl.obtain());
} else {
return reinterpret_cast<pointer>(::operator new(sizeof(T)));
}
}
void deallocate(pointer ptr, size_type) {
if (use_data) {
fl.give_back(reinterpret_cast<free_list*>(ptr));
} else {
::operator delete(reinterpret_cast<void*>(ptr));
}
}
template<class... Args>
static void construct(pointer ptr, Args&&... args) {
::new ((void*)ptr) value_type(std::forward<Args>(args)...);
}
static void destroy(pointer ptr) {
ptr->~value_type();
}
bool operator==(const myt& other) const {
return reinterpret_cast<char*>(data) ==
reinterpret_cast<char*>(other.data);
}
bool operator!=(const myt& other) const {
return !operator==(other);
}
private:
void create() {
size_type size = sizeof(value_type) < sizeof(free_list*) ?
sizeof(free_list*) : sizeof(value_type);
data = ::operator new(capacity * size);
fl.init(data, capacity, size);
}
void clear() {
::operator delete(data);
data = nullptr;
}
void* data;
free_list fl;
size_type capacity;
bool use_data;
};
template<>
class pool_alloc < void > {
public:
template <class U> struct rebind { typedef pool_alloc<U> other; };
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
};
template<class Container, class Alloc>
void change_capacity(Container& c, typename Alloc::size_type new_capacity) {
Container temp(c, Alloc(new_capacity));
c = std::move(temp);
}
Since the allocator is not automatic-growing (don't know how to make such a thing), I have added the change_capacity() function.

Resources