Let's say that I have a circular area and n objects deployed randomly in this area. I want to divide the circle into K groups from position of center such that objects in same area treated as member of same group. Moreover, K person assigned to visit K groups from the position of circle center (Specifically, one person for one group). Now, I want to group such a way that, traveling distance of a person for each group close to each other.
If objects are deployed uniformly, it's very easy. Only divide the area into equal angles gives me the desired results. But, for random deployment of objects, I could not divide the circular area (specifically, could not fix the angle) which gives me traveling distance for each person in each group which is close to each other
As mentioned in the comments, the subproblem of finding the shortest path within a group is NP-hard. Hence, the overall problem is NP-hard. I will present a dynamic programming algorithm that can either solve the problem exactly (in exponential time) or approximate it with a heuristic (in polynomial time).
Both variants require a function f(g) that evaluates the travel distance of a group. In the exact variant, you need to solve TSP. In the approximate variant, you use a heuristic. You should try several heuristics and see which one fits best. For example, the area of the objects' bounding ring might be a good start (plus the distance of the closest object to the center).
The actual algorithm looks as follows: Calculate the angular position of each object and sort them with respect to this position. Also, calculate the distance to the center.
For now, we assume that the first group starts at the first object. Then, we want to find the grouping that minimizes the sum of f(g) over all groups. The states of the dynamic program are parameterized by the number of groups specified so far and by the object that belongs to the first next group. This makes a 2D table. You can easily initialize the first column by calculating f() for the resulting group:
groups | 1 2 3 4 5 6 ... K
next object |
--------------+------------------------
o2 | f(o1->o1)
o3 | f(o1->o2)
... | ...
on | f(o1->on-1)
o1 | f(o1->on)
Then, you fill the subsequent columns. For each entry, you have to compare the group to all groups in the previous column and find the one with the minimum sum:
entry(column i, object j) = min_k (entry(i - 1, k) + f(ok->j-1))
Actually, you don't have to calculate the entire column. You can leave entries at the beginning and end empty if they do not allow to fit in K groups. E.g. in the first column, you only need to calculate up to on-(K-1) because you have to leave K-1 objects unassigned in order to get a valid grouping. You may cache the results of f to avoid duplicate calculations.
After you filled the table, you're interested in entry(K, o1). Follow the path from this entry back to the start and you get the optimal grouping where the first group starts at o1. Do this for the first n-K objects as group starts and you get the overall optimum.
The time complexity of this algorithm is O(n^3 * K * T(f)) where T(f) is the complexity of calculating f(g).
Related
Problem:
Given a group of numbers of length n (sorted), each number is the location of a house in a 1D line "city".
Given a number k<=n, you need to place k "supermarkets" on the 1D city.
For every element in A, the min distance is defined as the minimum distance between A and a supermarket: |a-c|.
The cost of a city is defined as the max of all min distances.
You need to find what the minimum (optimal) cost would be for a given A of length n, and k<=n.
I can't find a solution for this problem. The solution should use dynamic programming. I'm thinking of how to write the recursive formula, and I think I already came out with the base cases:
if k = n then obviously the result will be 0 since you can place each supermarket in a city
if k = 1, I think the solution should be: (A[n] - A[1])/2.
But I can't come up with the actual formula (and the whole actual dynamic program). Also, I can't seem to find a "title" to this answer, I didn't find any other example of this exact answer online.
To minimize the maximum distance from k supermarkets, you divide the houses into consecutive groups so that you minimize the maximum distance between the starting and ending houses in each group. Then you just put a supermarket in the middle of each group.
Solving the problem this way makes it much easier for dynamic programming, since it removes the continuous variable of supermarket position.
I came up with this recursive function for the problem:
if there are more stands than houses, the answer is 0
if there is only one stand, so we place it in the middle between the edges
Othrwise:
For all the indexes from i to j, we calculate the maximum between all of them, and then the min.
This question is unlikely to help any future visitors; it is only relevant to a small geographic area, a specific moment in time, or an extraordinarily narrow situation that is not generally applicable to the worldwide audience of the internet. For help making this question more broadly applicable, visit the help center.
Closed 10 years ago.
Given a polygon with N vertexes and N edges. There is an int number(could be negative) on every vertex and an operation in set (*,+) on every edge. Every time, we remove an edge E from the polygon, merge the two vertexes linked by the edge (V1,V2) to a new vertex with value: V1 op(E) V2. The last case would be two vertexes with two edges, the result is the bigger one.
Return the max result value can be gotten from a given polygon.
For the last case we might not need two merge as the other number could be negative, so in that case we would just return the larger number.
How I am approaching the problem:
p[i,j] denotes the maximum value we can obtain by merging nodes from labelled i to j.
p[i,i] = v[i] -- base case
p[i,j] = p[i,k] operator in between p[k+1,j] , for k between i to j-1.
and then p[0,n] will be my answer.
Second point , i will have to start from all the vertices and do the same as above as this will be cyclic n vertices n edges.
The time complexity for this is n^3 *n i.e n^4 .
Can i do better then this ?
As you have identified (tagged) correctly, this indeed is very similar to the matrix multiplication problem (in what order do I multiply matrixes in order to do it quickly).
This can be solved polynomially using a dynamic algorithm.
I'm going to instead solve a similar, more classic (and identical) problem, given a formula with numbers, addition and multiplications, what way of parenthesizing it gives the maximal value, for example
6+1 * 2 becomes (6+1)*2 which is more than 6+(1*2).
Let us denote our input a1 to an real numbers and o(1),...o(n-1) either * or +. Our approach will work as follows, we will observe the subproblem F(i,j) which represents the maximal formula (after parenthasizing) for a1,...aj. We will create a table of such subproblems and observe that F(1,n) is exactly the result we were looking for.
Define
F(i,j)
- If i>j return 0 //no sub-formula of negative length
- If i=j return ai // the maximal formula for one number is the number
- If i<j return the maximal value for all m between i (including) and j (not included) of:
F(i,m) (o(m)) F(m+1,j) //check all places for possible parenthasis insertion
This goes through all possible options. TProof of correctness is done by induction on the size n=j-i and is pretty trivial.
Lets go through runtime analysis:
If we do not save the values dynamically for smaller subproblems this runs pretty slow, however we can make this algorithm perform relatively fast in O(n^3)
We create a n*n table T in which the cell at index i,j contains F(i,j) filling F(i,i) and F(i,j) for j smaller than i is done in O(1) for each cell since we can calculate these values directly, then we go diagonally and fill F(i+1,i+1) (which we can do quickly since we already know all the previous values in the recursive formula), we repeat this n times for n diagonals (all the diagonals in the table really) and filling each cell takes (O(n)), since each cell has O(n) cells we fill each diagonals in O(n^2) meaning we fill all the table in O(n^3). After filling the table we obviously know F(1,n) which is the solution to your problem.
Now back to your problem
If you translate the polygon into n different formulas (one for starting at each vertex) and run the algorithm for formula values on it, you get exactly the value you want.
I think you can reduce the need for a brute force search. For example: if there is a chain of
x + y + z
You can replace it with a single vertex whose value is the sum, you can't do better than that. You need to do the multiplying after the addition when you're dealing with +ve integers. So if it's all positive then simply reduce all + chains and then mutliply.
So that leaves the cases where there are -ve numbers. Seems to me that the strategy for a single -ve number is pretty obvious, for two -ve numbers there are a few cases (remembering that - x - is positive) and for more than 2 -ve numbers it seems to get tricky :-)
Say I have a Group data structure which contains a list of Element objects, such that each group has a unique set of elements.:
public class Group
{
public List<Element> Elements;
}
and say I have a list of populations who require certain elements, in such a way that each population has a unique set of required elements:
public class Population
{
public List<Element> RequiredElements;
}
I have an unlimited quantity of each defined Group, i.e. they are not consumed by populations.
Say I am looking at a particular Population. I want to find the best possible match of groups such that there is minimum excess elements, and no unmatched elements.
For example: I have a population which needs wood, steel, grain, and coal. The only groups available are {wood, herbs}, {steel, coal, oil}, {grain, steel}, and {herbs, meat}.
The last group - {herbs, meat} isn't required at all by my population so it isn't used. All others are needed, but herbs and oil are not required so it is wasted. Furthermore, steel exists twice in the minimum set, so one lot of steel is also wasted. The best match in this example has a wastage of 3.
So for a few hundred Population objects, I need to find the minimum wastage best match and compute how many elements are wasted.
How do I even begin to solve this? Once I have found a match, counting the wastage is trivial. Finding the match in the first place is hard. I could enumerate all possibilities but with a few thousand populations and many hundreds of groups, it's quite a task. Especially considering this whole thing sits inside each iteration of a simulated annealing algorithm.
I'm wondering whether I can formulate the whole thing as a mixed-integer program and call a solver like GLPK at each iteration.
I hope I have explained the problem correctly. I can clarify anything that's unclear.
Here's my binary program, for those of you interested...
x is the decision vector, an element of {0,1}, which says that the population in question does/doesn't receive from group i. There is an entry for each group.
b is the column vector, an element of {0,1}, which says which resources the population in question does/doesn't need. There is an entry for each resource.
A is a matrix, an element of {0,1}, which says what resources are in what groups.
The program is:
Minimise: ((Ax - b)' * 1-vector) + (x' * 1-vector);
Subject to: Ax >= b;
The constraint just says that all required resources must be satisfied. The objective is to minimise all excess and the total number of groups used. (i.e. 0 excess with 1 group used is better than 0 excess with 5 groups used).
You can formulate an integer program for each population P as follows. Use a binary variable xj to denote whether group j is chosen or not. Let A be a binary matrix, such that Aij is 1 if and only if item i is present in group j. Then the integer program is:
min Ei,j (xjAij)
s.t. Ej xjAij >= 1 for all i in P.
xj = 0, 1 for all j.
Note that you can obtain the minimum wastage by subtracting |P| from the optimal solution of the above IP.
Do you mean the Maximum matching problem?
You need to build a bipartite graph, where one of the sides is your populations and the other is groups, and edge exists between group A and population B if it have it in its set.
To find maximum edge matching you can easily use Kuhn algorithm, which is greatly described here on TopCoder.
But, if you want to find mimimum edge dominating set (the set of minimum edges that is covering all the vertexes), the problem becomes NP-hard and can't be solved in polynomial time.
Take a look at the weighted set cover problem, I think this is exactly what you described above. A basic description of the (unweighted) problem can be found here.
Finding the minimal waste as you defined above is equivalent to finding a set cover such that the sum of the cardinalities of the covering sets is minimal. Hence, the weight of each set (=a group of elements) has to be defined equal to its cardinality.
Since even the unweighted the set cover problem is NP-complete, it is not likely that an efficient algorithm for your problem instances exist. Maybe a good greedy approximation algorithm will be sufficient or your purpose? Googling weighted set cover provides several promising results, e.g. this script.
You have a set of n objects for which integer positions are given. A group of objects is a set of objects at the same position (not necessarily all the objects at that position: there might be multiple groups at a single position). The objects can be moved to the left or right, and the goal is to move these objects so as to form k groups, and to do so with the minimum distance moved.
For example:
With initial positions at [4,4,7], and k = 3: the minimum cost is 0.
[4,4,7] and k = 2: minimum cost is 0
[1,2,5,7] and k = 2: minimum cost is 1 + 2 = 3
I've been trying to use a greedy approach (by calculating which move would be shortest) but that wouldn't work because every move involves two elements which could be moved either way. I haven't been able to formulate a dynamic programming approach as yet but I'm working on it.
This problem is a one-dimensional instance of the k-medians problem, which can be stated as follows. Given a set of points x_1...x_n, partition these points into k sets S_1...S_k and choose k locations y_1...y_k in a way that minimizes the sum over all x_i of |x_i - y_f(i)|, where y_f(i) is the location corresponding of the set to which x_i is assigned.
Due to the fact that the median is the population minimizer for absolute distance (i.e. L_1 norm), it follows that each location y_j will be the median of the elements x in the corresponding set S_j (hence the name k-medians). Since you are looking at integer values, there is the technicality that if S_j contains an even number of elements, the median might not be an integer, but in such cases choosing either the next integer above or below the median will give the same sum of absolute distances.
The standard heuristic for solving k-medians (and the related and more common k-means problem) is iterative, but this is not guaranteed to produce an optimal or even good solution. Solving the k-medians problem for general metric spaces is NP-hard, and finding efficient approximations for k-medians is an open research problem. Googling "k-medians approximation", for example, will lead to a bunch of papers giving approximation schemes.
http://www.cis.upenn.edu/~sudipto/mypapers/kmedian_jcss.pdf
http://graphics.stanford.edu/courses/cs468-06-winter/Papers/arr-clustering.pdf
In one dimension things become easier, and you can use a dynamic programming approach. A DP solution to the related one-dimensional k-means problem is described in this paper, and the source code in R is available here. See the paper for details, but the idea is essentially the same as what #SajalJain proposed, and can easily be adapted to solve the k-medians problem rather than k-means. For j<=k and m<=n let D(j,m) denote the cost of an optimal j-medians solution to x_1...x_m, where the x_i are assumed to be in sorted order. We have the recurrence
D(j,m) = min (D(j-1,q) + Cost(x_{q+1},...,x_m)
where q ranges from j-1 to m-1 and Cost is equal to the sum of absolute distances from the median. With a naive O(n) implementation of Cost, this would yield an O(n^3k) DP solution to the whole problem. However, this can be improved to O(n^2k) due to the fact that the Cost can be updated in constant time rather than computed from scratch every time, using the fact that, for a sorted sequence:
Cost(x_1,...,x_h) = Cost(x_2,...,x_h) + median(x_1...x_h)-x_1 if h is odd
Cost(x_1,...,x_h) = Cost(x_2,...,x_h) + median(x_2...x_h)-x_1 if h is even
See the writeup for more details. Except for the fact that the update of the Cost function is different, the implementation will be the same for k-medians as for k-means.
http://journal.r-project.org/archive/2011-2/RJournal_2011-2_Wang+Song.pdf
as I understand, the problems is:
we have n points on a line.
we want to place k position on the line. I call them destinations.
move each of n points to one of the k destinations so the sum of distances is minimum. I call this sum, total cost.
destinations can overlap.
An obvious fact is that for each point we should look for the nearest destinations on the left and the nearest destinations on the right and choose the nearest.
Another important fact is all destinations should be on the points. because we can move them on the line to right or to left to reach a point without increasing total distance.
By these facts consider following DP solution:
DP[i][j] means the minimum total cost needed for the first i point, when we can use only j destinations, and have to put a destination on the i-th point.
to calculate DP[i][j] fix the destination before the i-th point (we have i choice), and for each choice (for example k-th point) calculate the distance needed for points between the i-th point and the new point added (k-th point). add this with DP[k][j - 1] and find the minimum for all k.
the calculation of initial states (e.g. j = 1) and final answer is left as an exercise!
Task 0 - sort the position of the objects in non-decreasing order
Let us define 'center' as the position of the object where it is shifted to.
Now we have two observations;
For N positions the 'center' would be the position which is nearest to the mean of these N positions. Example, let 1,3,6,10 be the positions. Then mean = 5. Nearest position is 6. Hence the center for these elements is 6. This gives us the position with minimum cost of moving when all elements need to be grouped into 1 group.
Let N positions be grouped into K groups "optimally". When N+1 th object is added, then it will disturb only the K th group, i.e, first K-1 groups will remain unchanged.
From these observations, we build a dynamic programming approach.
Let Cost[i][k] and Center[i][k] be two 2D arrays.
Cost[i][k] = minimum cost when first 'i' objects are partitioned into 'k' groups
Center[i][k] stores the center of the 'i-th' object when Cost[i][k] is computed.
Let {L} be the elements from i-L,i-L+1,..i-1 which have the same center.
(Center[i-L][k] = Center[i-L+1][k] = ... = Center[i-1][k]) These are the only objects that need to be considered in the computation for i-th element (from observation 2)
Now
Cost[i][k] will be
min(Cost[i-1][k-1] , Cost[i-L-1][k-1] + computecost(i-L, i-L+1, ... ,i))
Update Center[i-L ... i][k]
computecost() can be found trivially by finding the center (from observation 1)
Time Complexity:
Sorting O(NlogN)
Total Cost Computation Matrix = Total elements * Computecost = O(NK * N)
Total = O(NlogN + N*NK) = O(N*NK)
Let's look at k=1.
For k=1 and n odd, all points should move to the center point. For k=1 and n even, all points should move to either of the center points or any spot between them. By 'center' I mean in terms of number of points to either side, i.e. the median.
You can see this because if you select a target spot, x, with more points to its right than it's left, then a new target 1 to the right of x would result in a cost reduction (unless there is exactly one more point to the right than the left and the target spot is a point, in which case n is even and the target is on/between the two center points).
If your points are already sorted, this is an O(1) operation. If not, I believe it's O(n) (via an order statistic algorithm).
Once you've found the spot that all points are moving to, it's O(n) to find the cost.
Thus regardless of whether the points are sorted or not, this is O(n).
Given a large sparse matrix (say 10k+ by 1M+) I need to find a subset, not necessarily continuous, of the rows and columns that form a dense matrix (all non-zero elements). I want this sub matrix to be as large as possible (not the largest sum, but the largest number of elements) within some aspect ratio constraints.
Are there any known exact or aproxamate solutions to this problem?
A quick scan on Google seems to give a lot of close-but-not-exactly results. What terms should I be looking for?
edit: Just to clarify; the sub matrix need not be continuous. In fact the row and column order is completely arbitrary so adjacency is completely irrelevant.
A thought based on Chad Okere's idea
Order the rows from largest count to smallest count (not necessary but might help perf)
Select two rows that have a "large" overlap
Add all other rows that won't reduce the overlap
Record that set
Add whatever row reduces the overlap by the least
Repeat at #3 until the result gets to small
Start over at #2 with a different starting pair
Continue until you decide the result is good enough
I assume you want something like this. You have a matrix like
1100101
1110101
0100101
You want columns 1,2,5,7 and rows 1 and 2, right? That submatrix would 4x2 with 8 elements. Or you could go with columns 1,5,7 with rows 1,2,3 which would be a 3x3 matrix.
If you want an 'approximate' method, you could start with a single non-zero element, then go on to find another non-zero element and add it to your list of rows and columns. At some point you'll run into a non-zero element that, if it's rows and columns were added to your collection, your collection would no longer be entirely non-zero.
So for the above matrix, if you added 1,1 and 2,2 you would have rows 1,2 and columns 1,2 in your collection. If you tried to add 3,7 it would cause a problem because 1,3 is zero. So you couldn't add it. You could add 2,5 and 2,7 though. Creating the 4x2 submatrix.
You would basically iterate until you can't find any more new rows and columns to add. That would get you too a local minimum. You could store the result and start again with another start point (perhaps one that didn't fit into your current solution).
Then just stop when you can't find any more after a while.
That, obviously, would take a long time, but I don't know if you'll be able to do it any more quickly.
I know you aren't working on this anymore, but I thought someone might have the same question as me in the future.
So, after realizing this is an NP-hard problem (by reduction to MAX-CLIQUE) I decided to come up with a heuristic that has worked well for me so far:
Given an N x M binary/boolean matrix, find a large dense submatrix:
Part I: Generate reasonable candidate submatrices
Consider each of the N rows to be a M-dimensional binary vector, v_i, where i=1 to N
Compute a distance matrix for the N vectors using the Hamming distance
Use the UPGMA (Unweighted Pair Group Method with Arithmetic Mean) algorithm to cluster vectors
Initially, each of the v_i vectors is a singleton cluster. Step 3 above (clustering) gives the order that the vectors should be combined into submatrices. So each internal node in the hierarchical clustering tree is a candidate submatrix.
Part II: Score and rank candidate submatrices
For each submatrix, calculate D, the number of elements in the dense subset of the vectors for the submatrix by eliminating any column with one or more zeros.
Select the submatrix that maximizes D
I also had some considerations regarding the min number of rows that needed to be preserved from the initial full matrix, and I would discard any candidate submatrices that did not meet this criteria before selecting a submatrix with max D value.
Is this a Netflix problem?
MATLAB or some other sparse matrix libraries might have ways to handle it.
Is your intent to write your own?
Maybe the 1D approach for each row would help you. The algorithm might look like this:
Loop over each row
Find the index of the first non-zero element
Find the index of the non-zero row element with the largest span between non-zero columns in each row and store both.
Sort the rows from largest to smallest span between non-zero columns.
At this point I start getting fuzzy (sorry, not an algorithm designer). I'd try looping over each row, lining up the indexes of the starting point, looking for the maximum non-zero run of column indexes that I could.
You don't specify whether or not the dense matrix has to be square. I'll assume not.
I don't know how efficient this is or what its Big-O behavior would be. But it's a brute force method to start with.
EDIT. This is NOT the same as the problem below.. My bad...
But based on the last comment below, it might be equivilent to the following:
Find the furthest vertically separated pair of zero points that have no zero point between them.
Find the furthest horizontally separated pair of zero points that have no zeros between them ?
Then the horizontal region you're looking for is the rectangle that fits between these two pairs of points?
This exact problem is discussed in a gem of a book called "Programming Pearls" by Jon Bentley, and, as I recall, although there is a solution in one dimension, there is no easy answer for the 2-d or higher dimensional variants ...
The 1=D problem is, effectively, find the largest sum of a contiguous subset of a set of numbers:
iterate through the elements, keeping track of a running total from a specific previous element, and the maximum subtotal seen so far (and the start and end elemnt that generateds it)... At each element, if the maxrunning subtotal is greater than the max total seen so far, the max seen so far and endelemnt are reset... If the max running total goes below zero, the start element is reset to the current element and the running total is reset to zero ...
The 2-D problem came from an attempt to generate a visual image processing algorithm, which was attempting to find, within a stream of brightnesss values representing pixels in a 2-color image, find the "brightest" rectangular area within the image. i.e., find the contained 2-D sub-matrix with the highest sum of brightness values, where "Brightness" was measured by the difference between the pixel's brighness value and the overall average brightness of the entire image (so many elements had negative values)
EDIT: To look up the 1-D solution I dredged up my copy of the 2nd edition of this book, and in it, Jon Bentley says "The 2-D version remains unsolved as this edition goes to print..." which was in 1999.