CPU speeds don't make any sense - cpu

I don't understand.... I bought a newer laptop with an i5-3317U core but it's only 1.70Ghz, while my way older laptop that has a i5-M560 core yet is 2.67Ghz. So, since the newer laptop should have a more updated core, why is the specs so much lower?

The clock speed only refers to the frequency of instructions executed per unit time . But some CPUs can handle more complex instructions which may be equivalent to several basic instructions in the case of previous gen CPUs . Architecture also matters , hence an efficient Architecture may increase the work done per unit time , irrespective of the clock speed . So in order for a cpu to be a beast , it should have a good efficient architecture and good clock speed .
Plus in some cases lower clock speeds in some modern CPUs are also because they want it to be more energy efficient while being powerful enough to take any load which is well within its limit .
Useful link : https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwiqnvjPmsLUAhUHuY8KHc9NCM8QFgguMAI&url=https%3A%2F%2Fwww.howtogeek.com%2F177790%2Fwhy-you-cant-use-cpu-clock-speed-to-compare-computer-performance%2F&usg=AFQjCNFi51BljRrxkt3ZpKlHG4bSQa8L0A

Related

Performance of dependent pre/post-incremented memory accesses

My question primarily applies to firestorm/icestorm (because that's the hardware I have), but I am curious about what other representative arm cores do too. Arm has strange pre- and post-incremented addressing modes. If I have (for instance) two post-incremented loads from the same register, will the second depend on the first, or is the CPU smart enough to perform them in parallel?
AFAIK the exact behaviour of the M1 execution units is mainly undocumented. Still, there is certainly a dependency chain in this case. In fact, it would be very hard to break it and the design of modern processors make this even harder: the decoders, execution units, schedulers are distinct units and it would be insane to dynamically adapt the scheduling based on the instructions executed in parallel by execution units so to be able to break the chain in this particular case. Not to mention that instructions are pipelined and it generally takes few cycles for them to be committed. Furthermore, the time of the instructions is variable based on the fetched memory location. Finally, even this would be the case, the Firestorm documents does not mention such a feedback loop (see below for the links). Another possible solution for a processor to optimize such a pattern is to fuse the microinstructions so to combine the increment and add more parallelism but this is pretty complex to do for a relatively small improvement and there is no evidence showing Firestorm can do that so far (see here for more information about Firestorm instruction fusion/elimitation).
The M1 big cores (Apple's Firestorm) are designed to be massively parallel. They have 6 ALUs per core so they can execute a lot instructions in parallel on each core (possibly at the expense of a higher latency). However, this design tends to require a lot more transistors than current mainstream x86 Intel/AMD alternative (Alderlake/XX-Cove architecture put aside). Thus, the cores operate at a significantly lower frequency so to keep the energy consumption low. This means dependency chains are significantly more expensive on such an architecture compared to others unless there are enough independent instructions to be execute in parallel on the critical path. For more information about how CPUs works please thread Modern Microprocessors - A 90-Minute Guide!. For more information about the M1 processors and especially the Firestorm architecture, please read this deep analysis.
Note that Icestorm cores are designed to be energy efficient so they are far less parallel and thus having a dependency chain should be less critical on such a core. Still, having less dependency is often a good idea.
As for other ARM processors, recent core architecture are not as parallel as Firestorm. For example, the Cortex-A77 and Neoverse V1 have "only" 4 ALUs (which is already quite good). One need to also care about the latency of each instruction actually used in a given code. This information is available on the ARM website and AFAIK not yet published for Apple processors (one need to benchmark the instructions).
As for the pre VS post increment, I expect them to take the same time (same latency and throughput), especially on big cores like Firestorm (that try to reduce the latency of most frequent instruction at the expense of more transistors). However, the actual scheduling of the instruction for a given code can cause one to be slower than the other if the latency is not hidden by other instructions.
I received an answer to this on IRC: such usage will be fairly fast (makes sense when you consider it corresponds to typical looping patterns; good if the loop-carried dependency doesn't hurt too much), but it is still better to avoid it if possible, as it takes up rename bandwidth.

Are there deterministic architecture emulators available?

Does such a thing as a deterministic (as in same result every run) architecture emulator exist? It is to benchmark test compilers/interpreters.
I do not mean an emulator that simply runs your program on whatever simulated architecture, but something that would compute an efficiency/speed index based on the analysis of the generated code (such as, the thing would have a deterministic value for the time taken by each instruction).
I can compute benchmark statistics on a real machine, but a deterministic result would eliminate the particularities of my machine and allow me to see the effect of small optimizations.
Intel's IACA is a static analysis tool. What is IACA and how do I use it?. But it only works for a single loop and doesn't model cache effects, only the pipeline. (And it assumes nearly-ideal OoO scheduling, I think, so probably doesn't find ROB-size limits, only front-end vs. execution port vs. loop-carried dependency latency bottlenecks). Plus IACA has some bugs in its cost model (e.g. its unlamination rules for micro-fusion of indexed addressing modes are wrong for Haswell).
AFAIK, there are no cycle accurate x86 simulators publicly available for any modern micro-architecture. We only have emulators that don't even try to run at the same speed as any real hardware, just as fast as possible, like BOCHS and qemu. I'm sure Intel and AMD have simulator software internally to validate CPU designs and model their performance, though.
You could probably assign a cycle cost to every instruction in an interpreting emulator like BOCHS and get a deterministic number, and maybe model the cache, too (there are cache simulators). It would be the same every time you ran it, but it wouldn't correspond to the running time on any real hardware!
Being deterministic is nowhere near sufficient to be interesting for tuning software. Modern x86 CPUs have a lot of microarchitectural state for out-of-order execution. We can often predict very close to how they'll run a loop (http://agner.org/optimize/, and other performance links in the x86 tag wiki), but on a larger scale there are many things that are only known by the vendors so so we couldn't write a truly accurate simulator even if we had the time. Things like branch-prediction are known in general terms, but the details have not been reverse-engineered in full detail. But branch prediction is a critical part of making a heavily pipelined CPU sustain anywhere near 3 to 4 fused-domain (front-end) uops per clock in real code.
Things get even more complicated if you want to model a multi-core machine, and SMT / HT adds lots of complexity between threads sharing a core. It's barely deterministic in the real hardware because small timing variations can lead to different threads getting farther out of sync.
To be really useful, you'd want to be able to test your code on Sandybridge, Haswell, Skylake, Bulldozer, Ryzen, and maybe Silvermont. And maybe different variants of those with different amounts of cache, and server vs. desktop where L3 / memory latency differs. (Many-core servers have significantly worse uncore latency, and lower single-threaded bandwidth even though the aggregate bandwidth is higher.)
So the whole idea of a deterministic simulator for "the x86 architecture" is weird. You could make one as simply as by giving each instruction a cost of 1 cycle, but that would be totally unrealistic.

How to monitor the utilization of cores on Xeon Phi at 10Hz?

I've been trying to measure/monitor the utilization of all those 60 cores on Xeon Phi (Knights Corner, in-order processors) at a relatively high frequency, say, at least every 0.1s which yields to 10Hz.
I tried the latest PAPI library. But it only supports PAPI_TOT_INS which is the counter of completed instructions. This won't work because I actually need something related to the instructions issued every 0.1s, not finished. Several instructions issued at different cycles may finish at the same cycle. The issue of instructions is influenced by whether the core is halted or not.
Other commands available like 'top' and 'perf' operate at 1Hz which is too slow for my measurement. I need a higher frequency. And, I also need to synchronize the measurement with vital phases of my codes. So, the Intel Vtune Profile does not work for me either.
Is there a possible way for me to monitor the issue of instructions on Xeon Phi or any other activities linked to their utilizations? I understand that those hardware counters are there, but to read them seems very challenging to me. Maybe I can deduce this utilization by measuring the CPU time of each thread?
Thanks.

How to reduce time taken for large calculations in MATLAB

When using the desktop PC's in my university (Which have 4Gb of ram), calculations in Matlab are fairly speedy, but on my laptop (Which also has 4Gb of ram), the exact same calculations take ages. My laptop is much more modern so I assume it also has a similar clock speed to the desktops.
For example, I have written a program that calculates the solid angle subtended by 50 disks at 500 points. On the desktop PC's this calculation takes about 15 seconds, on my laptop it takes about 5 minutes.
Is there a way to reduce the time taken to perform these calculations? e.g, can I allocate more ram to MATLAB, or can I boot up my PC in a way that optimises it for using MATLAB? I'm thinking that if the processor on my laptop is also doing calculations to run other programs this will slow down the MATLAB calculations. I've closed all other applications, but I know theres probably a lot of stuff going on I can't see. Can I boot my laptop up in a way that will have less of these things going on in the background?
I can't modify the code to make it more efficient.
Thanks!
You might run some of my benchmarks which, along with example results, can be found via:
http://www.roylongbottom.org.uk/
The CPU core used at a particular point in time, is the same on Pentiums, Celerons, Core 2s, Xeons and others. Only differences are L2/L3 cache sizes and external memory bus speeds. So you can compare most results with similar vintage 2 GHz CPUs. Things to try, besides simple number crunching tests.
1 - Try memory test, such as my BusSpeed, to show that caches are being used and RAM not dead slow.
2 - Assuming Windows, check that the offending program is the one using most CPU time in Task Manager, also that with the program not running, that CPU utilisation is around zero.
3 - Check that CPU temperature is not too high, like with SpeedFan (free D/L).
4 - If disk light is flashing, too much RAM might be being used, with some being swapped in and out. Task Manager Performance would show this. Increasing RAM demands can be checked my some of my reliability tests.
There are many things that go into computing power besides RAM. You mention processor speed, but there is also number of cores, GPU capability and more. Programs like MATLAB are designed to take advantage of features like parallelism.
Summary: You can't compare only RAM between two machines and expect to know how they will perform with respect to one another.
Side note: 4 GB is not very much RAM for a modern laptop.
Firstly you should perform a CPU performance benchmark on both computers.
Modern operating systems usually apply the most aggressive power management schemes when it is run on laptop. This usually means turning off one or more cores, or setting them to a very low frequency. For example, a Quad-core CPU that normally runs at 2.0 GHz could be throttled down to 700 MHz on one CPU while the other three are basically put to sleep, while it is on battery. (Remark. Numbers are not taken from a real example.)
The OS manages the CPU frequency in a dynamic way, tweaking it on the order of seconds. You will need a software monitoring tool that actually asks for the CPU frequency every second (without doing busy work itself) in order to know if this is the case.
Plugging in the laptop will make the OS use a less aggressive power management scheme.
(If this is found to be unrelated to MATLAB, please "flag" this post and ask moderator to move this question to the SuperUser site.)

Is there any difference performance difference between g++-mp-4.8 and g++-4.8?

I'm compiling the same program on two different machines and then running tests to compare performance.
There is a difference in the power of the two machines: one is MacBook Pro with a four 2.3GHz processors, the other is a Dell server with twelve 2.9 GHz processors.
However, the mac runs the test programs in shorter time!!
The only difference in the compilation is that I run g++-mp-4.8 on the machine mac, and g++-4.8 on the other.
EDIT: There is NO parallel computing going on, and my process was the only one run on the server. Also, I've updated the number of cores on the Dell.
EDIT 2: I ran three tests of increasing complexity, the times obtained were, in the format (Dell,Mac) in seconds: (1.67,0.56), (45,35), (120,103). These differences are quite substantial!
EDIT 3: Regarding the actual processor speed, we considered this with the system administrator and still came up with no good reason. Here is the spec for the MacBook processor:
http://ark.intel.com/fr/products/71459/intel-core-i7-3630qm-processor-6m-cache-up-to-3_40-ghz
and here for the server:
http://ark.intel.com/fr/products/64589/Intel-Xeon-Processor-E5-2667-15M-Cache-2_90-GHz-8_00-GTs-Intel-QPI
I would like to highlight a feature that particularly skews results of single-threaded code on mobile processors:
Note that while there's a 500 MHz difference in base speed (the question mentioned 2.3 GHz, are we looking at the same CPU?), there's only a 100 MHz difference in single-threaded speed, when Turbo Boost is running at maximum.
The Core-i7 also uses faster DDR than its server counterpart, which normally runs at a lower clock speed with more buffers to support much larger capacities of RAM. Normally the number of channels on the Xeon and difference in L3 cache size makes up for this, but different workloads will make use of cache and main memory differently.
Of course generational improvements can make a difference as well. The significance of Ivy Bridge vs Sandy Bridge varies greatly with application.
A final possibility is that the program runtime isn't CPU-bound. I/O subsystem, speed of GPGPU, etc can affect performance over multiple orders of magnitude for applications that exercise those.
The compilers are practically identical (-mp just signifies that this gcc version was installed via macports).
The performance difference you observed results from the different CPUs: The server is a "Sandy Bridge" microarchitecture, running at 3.5 GHz, while the MacBook has a newer "Ivy Bridge" CPU running at 3.4 GHz (single-thread turbo boost speeds).
Between Sandy Bridge and Ivy Bridge is just a "Tick" in Intel parlance, meaning that the process was changed (from 32nm to 22nm), but almost no changes to the microarchitecture. Still there are some changes in Ivy Bridge that improve the IPC (instructions per clock-cycle) for some workloads. In particular, the throughput of division operations, both integer and floating-point, was doubled. (For more changes, see the review on AnandTech: http://www.anandtech.com/show/5626/ivy-bridge-preview-core-i7-3770k/2 )
As your workload contains lots of divisions, this fits your results quite nicely: the "small" testcase shows the largest improvement, while in the larger testcases, the improved core performance is probably shadowed by memory access, which seems roughly the same speed in both systems.
Note that this is purely educated guessing given the current information - one would need to look at your benchmark code, the compiler flags, and maybe analyze it using the CPU performance counters to verify this.

Resources