I have defined a predicate find_word/2 that when given a list of letters (with some letters possibly ungrounded), produces possible words that match the pattern given in the list. This is something like a hangman solver.
word('entity', n, 11).
word('physical entity', n, 1).
word('abstraction', n, 0).
% ... and 200,000 more entries ...
% Example: find_word([_,o,u,n,t,r,y], X) -> X = country
find_word(LetterList, Word) :-
word(Word, _, _),
atom_chars(Word, LetterList).
The code above works as intended. The challenge is that I receive hangman problems from outside the Prolog system as a string (e.g. app_e), where the underscores in the string represent the missing letters to be found by the prolog program above. i.e. I need to convert the app_e string into a list that can be fed into find_word/2.
On my first attempt, I used atom_chars\2:
?- atom_chars(app_e, L), find_word(L, Word).
Unfortunately, this does not work as hoped because atom_chars(app_e, L) -> L = [a, p, p, '_', e]. i.e. the '_' isn't a wildcard.
In summary, given a string app_e, how do I transform it into a list that can be fed into find_word\2 to achieve the same effect as find_word([a,p,p,_,e], Word).?
I think atom_chars/2 is working as intended here, you just need a little cleanup step to finish turning your input into the desired form, which I think you can do quite straightforwardly like so:
charvar('_', _).
charvar(C, C) :- C \= '_'.
Usage looks like this:
?- maplist(charvar, [a,p,p,'_',e], X).
X = [a, p, p, _3398, e] .
Don't worry about the fact that this variable is not rendered as an underscore; your own probably wouldn't be either:
?- X=[_].
X = [_3450].
i am new to Prolog. I am suppose to write Create a ternary predicate which will add the
first parameter, a number, to each number in the second parameter, a list. The third parameter will hold the result.
e.g.
?-addparam1(4,[a,3,6,b,8],X).
X=[a,7,10,b,12]
I wrote the following code:
test(X , [] ,[] ).
test(X , [H|T] ,[A|B]) :- add(X,H,A),test(X,T,B).
add(X,H,K):-K is H +X.
It works fine if I give only numbers in the list but not for alphabets. I tried using an if statement
add(X,H,K):- atom(H)->K is H ; K is H +X.
but still it didn't give the result.
You're almost right. is is the wrong operator, you'll want =. Also, it might be saver to check with number/1. Since [a] and a(b) also aren't atoms, but aren't numbers either.
This way it becomes:
add(X,H,K):-
number(H)->
K is H+X;
K = H.
Kindly, could you help me in the following:
I am writing a Prolog program that takes two numbers digits then combine them as one number, for example:
Num1: 5
Num2: 1
Then the new number is 51.
Assume V1 is the first number digit and V2 is the second number digit. I want to combine V1 and V2 then multiply the new number with V3, so my question is how I can do it?
calculateR(R, E, V1, V2, V3, V4):-
R is V1 V2 * V3,
E is R * V4.
Your help is appreciated.
Here is another solution that is based on the idea of #aBathologist and that relies on ISO predicates only, and does not dependent on SWI's idiosyncratic modifications and extensions. Nor does it have most probably unwanted solutions like calculateR('0x1',1,1,17). nor calculateR(1.0e+30,0,1,1.0e+300). Nor does it create unnecessary temporary atoms.
So the idea is to restrict the definition to decimal numbers:
digit_digit_number(D1, D2, N) :-
number_chars(D1, [Ch1]),
number_chars(D2, [Ch2]),
number_chars(N, [Ch1,Ch2]).
Here is a version which better clarifies the relational nature of Prolog - using library(clpfd) which is available in many Prolog systems (SICStus, SWI, B, GNU, YAP). It is essentially the same program as the one with (is)/2 except that I added further redundant constraints that permit the system to ensure termination in more general cases, too:
:- use_module(library(clpfd)).
digits_radix_number(Ds, R, N) :-
digits_radix_numberd(Ds, R, 0,N).
digits_radix_numberd([], _, N,N).
digits_radix_numberd([D|Ds], R, N0,N) :-
D #>= 0, D #< R,
R #> 0,
N0 #=< N,
N1 #= D+N0*R,
digits_radix_numberd(Ds, R, N1,N).
Here are some uses:
?- digits_radix_number([1,4,2],10,N).
N = 142.
?- digits_radix_number([1,4,2],R,142).
R = 10.
?- digits_radix_number([1,4,2],R,N).
R in 5..sup, 4+R#=_A, _A*R#=_B, _A in 9..sup, N#>=_A,
N in 47..sup, 2+_B#=N, _B in 45..sup.
That last query asks for all possible radices that represent [1,4,2] as a number. As you can see, not anything can be represented that way. The radix has to be 5 or larger which is not surprising given the digit 4, and the number itself has to be at least 47.
Let's say we want to get a value between 1450..1500, what radix do we need to do that?
?- digits_radix_number([1,4,2],R,N), N in 1450..1500.
R in 33..40, 4+R#=_A, _A*R#=_B, _A in 37..44,
N in 1450..1500, 2+_B#=N, _B in 1448..1498.
Gnah, again gibberish. This answer contains many extra equations that have to hold. Prolog essentially says: Oh yes, there is a solution, provided all this fine print is true. Do the math yourself!
But let's face it: It is better if Prolog gives such hard-to-swallow answer than if it would say Yes.
Fortunately there are ways to remove such extra conditions. One of the simplest is called "labeling", where Prolog will "try out" value after value:
?- digits_radix_number([1,4,2],R,N), N in 1450..1500, labeling([],[N]).
false.
That is clear response now! There is no solution. All these extra conditions where essentially false, like all that fine print in your insurance policy...
Here's another question: Given the radix and the value, what are the required digits?
?- digits_radix_number(D,10,142).
D = [1,4,2]
; D = [0,1,4,2]
; D = [0,0,1,4,2]
; D = [0,0,0,1,4,2]
; D = [0,0,0,0,1,4,2]
; ... .
So that query can never terminate, because 00142 is the same number as 142. Just as 007 is agent number 7.
Here is a straight-forward solution that should work in any Prolog close to ISO:
digits_radix_to_number(Ds, R, N) :-
digits_radix_to_number(Ds, R, 0,N).
digits_radix_to_number([], _, N,N).
digits_radix_to_number([D|Ds], R, N0,N) :-
N1 is D+N0*R,
digits_radix_to_number(Ds, R, N1,N).
?- digits_radix_to_number([1,4,2],10,R).
R = 142.
Edit: In a comment, #false pointed out that this answer is SWI-Prolog specific.
You can achieve your desired goal by treating the numerals as atoms and concatenating them, and then converting the resultant atom into a number.
I'll use atom_concat/3 to combine the two numerals. In this predicate, the third argument with be the combination of atoms in its first and second arguments. E.g.,
?- atom_concat(blingo, dingo, X).
X = blingodingo.
Note that, when you do this with two numerals, the result is an atom not a number. This is indicated by the single quotes enclosing the the result:
?- atom_concat(5, 1, X).
X = '51'.
But 51 \= '51' and we cannot multiply an atom by number. We can use atom_number/2 to convert this atom into a number:
?- atom_number('51', X).
X = 51.
That's all there is to it! Your predicate might look like this:
calculateR(No1, No2, Multiplier, Result) :-
atom_concat(No1, No2, NewNoAtom),
atom_number(NewNoAtom, NewNo),
Result is NewNo * Multiplier.
Usage example:
?- calculateR(5, 1, 3, X).
X = 153.
Of course, you'll need more if you want to prompt the user for input.
I expect #Wouter Beek's answer is more efficient, since it doesn't rely on converting the numbers to and from atoms, but just uses the assumption that each numeral is a single digit to determine the resulting number based on their position. E.g., if 5 is in the 10s place and 1 is in the 1s place, then the combination of 5 and 1 will be 5 * 10 + 1 * 1. The answer I suggest here will work with multiple digit numerals, e.g., in calculateR(12, 345, 3, Result), Result is 1234 * 3. Depending on what you're after this may or may not be a desired result.
If you know the radix of the numbers involved (and the radix is the same for all the numbers involved), then you can use the reverse index of the individual numbers in order to calculate their positional summation.
:- use_module(library(aggregate)).
:- use_module(library(lists)).
digits_to_number(Numbers1, Radix, PositionalSummation):-
reverse(Numbers1, Numbers2),
aggregate_all(
sum(PartOfNumber),
(
nth0(Position, Numbers2, Number),
PartOfNumber is Number * Radix ^ Position
),
PositionalSummation
).
Examples of use:
?- digits_to_number([5,1], 10, N).
N = 51.
?- digits_to_number([5,1], 16, N).
N = 81.
(The code sample is mainly intended to bring the idea across. Notice that I use aggregate_all/3 from SWI-Prolog here. The same could be achieved by using ISO predicates exclusively.)
Alright so I am coding a parser for arithmetic equations. I get the input in a list, e.g. "10+20" = [49,48,43,50,48] and then I convert all the digits to there corresponding numbers e.g. [49,48,43,50,48] = [1,0,43,2,0] and from there I want to put integers > 10 back together.
Converting from ascii -> digits I use a maplist and number_codes to convert.
One approach I had was to just traverse the list and if it's 0-9 store it in a variable and then check the next number, 0-9 append it to the other variable and so on until I hit an operator. I can't seem to simply append digits as it were. Here's my current code.
expression(L) :-
maplist(chars, L, Ls).
chars(C, N) :-
(
C >= "0", "9" >= C -> number_codes(N, [C]);
N is C
).
Not sure if there's a simple way to add to my code (as far as I know, maplist only gives back a list of equal length to the list passed in but I could be mistaken).
Any help is appreciated :)
Yes, maplist only 'gives back' a list of equal length. Moreover, maplist applies a predicate only to one element (basically it's context-free). Therefore, it is not possible to do what you want (combine digits between operators to a single number) with maplist and you would have to write the recursion yourself.
However, you can do something way easier than all this converting back and forth:
expression(L, E):-
string_to_atom(L,A),
atom_to_term(A,E,[]).
Which works like this:
2 ?- expression("1+2",E).
E = 1+2.
3 ?- expression("1+2",E), X is E.
E = 1+2, X = 3.
4 ?- expression("1+2",E), X+Y = E.
E = 1+2, X = 1, Y = 2.
5 ?- expression("1+2+3",E), X+Y = E.
E = 1+2+3, X = 1+2, Y = 3.
Naturally, if you want a list with all the numbers involved you will have to do something recursive but this is kinda trivial imho.
If however you still want to do the converting, I suggest checking Definite Clause Grammars; it will simplify the task a lot.
I answered some time ago with an expression parser.
It will show you how to use DCG for practical tasks, and I hope you will appreciate the generality and simplicity of such approach.
Just a library predicate is required from SWI-Prolog, number//1, easily implemented in Sicstus. Let me know if you need more help on that.
I know that we can concat atoms using atom_concat(Para1,Para1,Final)., Is there any function available in Prolog which can perform the reverse operation mean it takes input as an atom and provides two atom in which one is the last character of the atom and second is remaining one. eg.
?- rev_atom_concat(likes,Para1,Para2).
Para1 = like, Para2 = s
I am not sure that is this really possible or not..?
You may use sub_atom for this. sub_atom extracts part of an atom. The syntax is:
sub_atom(+Atom, ?Before, ?Len, ?After, ?Sub)
Atom is the initial atom; Sub the sub-atom. Extraction works this way:
<************************ Atom ************************>
<***** Prefix *****><***** Sub *****><**** Suffix *****>
<-- before chars --><-- len chars --><-- after chars -->
For example, to extract the last character:
?- sub_atom(likes, _, 1, 0, S).
S = s.
For exemple, to extract all the characters but the last one:
?- sub_atom(likes, 0, _, 1, S).
S = like.