How many digits of randomness does GUID provide? - random

I know GUID is not random and that should not be used for security purposes, but how many random digits does it provide ? (To which extent can it be used as source of entropy for any task that does not require security)
Of 32 digits in example, maybe 4/5 are random?

A version 4 UUID (also known as GUID) contains 122 randomly chosen bits; the other 6 bits are fixed. (There are other versions of UUIDs; see RFC 4122.) UUIDs are intended as identifiers, not as a source of randomness.

Related

Differences between "UUIDv4 generation libaries" -vs- "just rolling your own with random hex characters or bits"

On the topic of the makeup of a UUID4, according to Wikipedia...
Version 4 UUIDs have the form xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx
where x is any hexadecimal digit and y is one of 8, 9, A, or B
So there are three possible methods I can think of that a programmer can use to generate a random UUID4:
MethodA) Use a "proper" UUID4 generation library that already exists.
-or-
MethodB) Roll-your-own simply by using a random hex chararacters on string:
Start with a string "xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx"
Replace the "x" characters with random hex characters (0-9a-f)
Replace the "y" with any one of: 8 9 a b
The above steps are just one simple example of how this could be done as a character string. Please consider any other method operating on a character string and randomly chosen hex characters to still be "MethodB", for example starting with an empty string and appending characters one at a time.
-or-
MethodC: Roll-your-own with bitwise operations:
I guess this is how most libraries are doing it? Using mostly random bits while ensuring that the "4" and "8/9/a/b" are in the final generated string.
Questions:
Q1: Are there technically any differences in the resulting UUIDv4 that would be generated in terms of their randomness or general compatibility with databases etc that will store the UUIDv4?
Q2: Are there any downsides to using method #2 (random hex characters) over #1 or #3 (bitwise)?
Q3: Are the "proper" UUIDv4 generation libraries in MethodA doing anything special on top of how the simple approaches in MethodB and MethodC would do it?
Q4: Is any method more like to run into conflicts?
Q5: Are the resulting UUIDs generated by MethodB + MethodC fully compliant with the UUIDv4 specification (even if they are not compliant in their methodology to get there).
Notes:
This question only pertains to UUID version 4.
Obviously its easier to just use a library, I'm just asking about differences in the resulting generated UUIDv4 outcome rather than the amount effort the programmer puts in.
I'm also not really concerned with performance with the above questions. But if you also have any comments on this, that might be interesting too. I'd assume the libraries are better performance wise.
Q1: Are there technically any differences in the resulting UUIDv4 that
would be generated in terms of their randomness or general
compatibility with databases etc that will store the UUIDv4?
Technically, no difference.
Q2: Are there any downsides to using method #2 (random hex characters)
over #1 or #3 (bitwise)?
No downsides; not really.
Q3: Are the "proper" UUIDv4 generation libraries in MethodA doing
anything special on top of how the simple approaches in MethodB and
MethodC would do it?
Libraries generally do exactly what MethodC implies
Q4: Is any method more like to run into conflicts?
Not really.
Q5: Are the resulting UUIDs generated by MethodB + MethodC fully
compliant with the UUIDv4 specification (even if they are not
compliant in their methodology to get there).
Yes.
Successful generation of (RFC 4122 variant) version 4 UUIDs is not complex; but requires some understanding of random number generation. For example, the difference between "pseudo-random" number generation vs. "crypto" quality random number generation.
For example, a very simple "pseudo-random" number generator will often produce the same exact series of "random" numbers; which is often sufficiently annoying that a "seed" can be introduced to change the random number sequence.
Of course, it is also annoying to generate the same UUIDs each time a UUID generator is invoked. Hence, a "pseudo-random" number generator is not ideal for generating UUIDs.
"Crypto" quality random numbers are, perhaps, much more random, and are used by most UUID version 4 generators.
In short, the best UUID version 4 generators are those based on the best random number generators. Section 4.4 of RFC 4122 give suggestions on how to achieve a higher degree of UUID version 4 randomness.
There is a COMB UUID that was derived from the RFC 4122 variant that might be interesting to you.
--
BONUS: You might want to check out Mahonri Moriancumer's UUID and GUID Generator and Forensics page. It uses a crypto quality random number generator to generate version 4 UUIDs.

hashing mechanism to hash an input (0 to 2^32 - 1) to a fixed possibly 12 character hash

I'm looking for a way to implement a hashing mechanism to hash an input (0 to 2^32 - 1) to a fixed possibly 12 character hash.
Background:
I have a transaction table, where the primary key is auto increment (max size is 2^32) and I have to show an invoice no to the client which has to be of decent characters length (I'm thinking 12) and so since the client shouldn't get id as 0000-0000-0001, I was thinking hashing is the best way to go.
The main requirement (that I can think of) is that many to one mapping should never take place, and should not be slow.
Would it be okay if I use a common hashing mechanism and then drop the extra characters. (md5 for example in php generates 32 character string)?
The way I understand, there is no need to be secure cryptographically, and so I can generate a custom hash if possible.
Similar links:
1) Symmetric Bijective Algorithm for Integers
2) Pseudo-random-looking one-to-one int32->int32 function
Using md5 and chopping off most of it is not a good idea, because there is no guarantee that you would get a unique cache. Besides, you have much easier alternatives available to you, because you have a lot more bits than you need.
Values in the range [0..232] need 32 bit (duh!). You have 12 printable characters, which give you 72 bits if you stay within Base-64 encoding range of characters. You don't even need that many characters - you can use three bits per character for the initial eight characters, and two bits per character for the last four digits. This way your 12 characters would stay in the range ['0'..'7'], and the last four would be in the range ['0'..'3']. Of course you are not bound to numeric digits - you could use letters for some groups of digits, to give it a more "randomized" appearance.
the id is auto increment, and I don't think that I should give invoice numbers as 000...001 and so on.
Start with least significant bits when you generate these representations, then proceed to least significant, or make an arbitrary (but fixed) map of which bits go to what digit in the 12-character representation. This way the IDs would not look sequential, but would remain fully reversible.

C++ random_shuffle() how does it work?

I have a Deck vector with 52 Card, and I want to shuffle it.
vector<Card^> cards;
So I used this:
random_shuffle(cards.begin(), cards.end());
The problem was that it gave me the same result every time, so I used srand to randomize it:
srand(unsigned(time(NULL)));
random_shuffle(cards.begin(),cards.end());
This was still not truly random. When I started dealing cards, it was the same as in the last run. For example: "1. deal: A,6,3,2,K; 2. deal: Q,8,4,J,2", and when I restarted the program I got exactly the same order of deals.
Then I used srand() and random_shuffle with its 3rd parameter:
int myrandom (int i) {
return std::rand()%i;
}
srand(unsigned(time(NULL)));
random_shuffle(cards.begin(),cards.end(), myrandom);
Now it's working and always gives me different results on re-runs, but I don't know why it works this way. How do these functions work, what did I do here?
This answer required some investigation, looking at the C++ Standard Library headers in VC++ and looking at the C++ standard itself. I knew what the standard said, but I was curious about VC++ (including C++CLI) did their implementation.
First what does the standard say about std::random_shuffle . We can find that here. In particular it says:
Reorders the elements in the given range [first, last) such that each possible permutation of those elements has equal probability of appearance.
1) The random number generator is implementation-defined, but the function std::rand is often used.
The bolded part is key. The standard says that the RNG can be implementation specific (so results across different compilers will vary). The standard suggests that std::rand is often used. But this isn't a requirement. So if an implementation doesn't use std::rand then it follows that it likely won't use std::srand for a starting seed. An interesting footnote is that the std::random_shuffle functions are deprecated as of C++14. However std::shuffle remains. My guess is that since std::shuffle requires you to provide a function object you are explicitly defining the behavior you want when generating random numbers, and that is an advantage over the older std::random_shuffle.
I took my VS2013 and looked at the C++ standard library headers and discovered that <algorithm> uses template class that uses a completely different pseudo-rng (PRNG) than std::rand with an index (seed) set to zero. Although this may vary in detail between different versions of VC++ (including C++/CLI) I think it is probable that most versions of VC++/CLI do something similar. This would explain why each time you run your application you get the same shuffled decks.
The option I would opt for if I am looking for a Pseudo RNG and I'm not doing cryptography is to use something well established like Mersenne Twister:
Advantages The commonly-used version of Mersenne Twister, MT19937, which produces a sequence of 32-bit integers, has the following desirable properties:
It has a very long period of 2^19937 − 1. While a long period is not a guarantee of quality in a random number generator, short periods (such as the 2^32 common in many older software packages) can be problematic.
It is k-distributed to 32-bit accuracy for every 1 ≤ k ≤ 623 (see definition below).
It passes numerous tests for statistical randomness, including the Diehard tests.
Luckily for us C++11 Standard Library (which I believe should work on VS2010 and later C++/CLI) includes a Mersenne Twister function object that can be used with std::shuffle Please see this C++ documentation for more details. The C++ Standard Library reference provided earlier actually contains code that does this:
std::random_device rd;
std::mt19937 g(rd());
std::shuffle(v.begin(), v.end(), g);
The thing to note is that std::random_device produces non-deterministic (non repeatable) unsigned integers. We need non-deterministic data if we want to seed our Mersenne Twister (std::mt19937) PRNG with. This is similar in concept to seeding rand with srand(time(NULL)) (The latter not being an overly good source of randomness).
This looks all well and good but has one disadvantage when dealing with card shuffling. An unsigned integer on the Windows platform is 4 bytes (32 bits) and can store 2^32 values. This means there are only 4,294,967,296 possible starting points (seeds) therefore only that many ways to shuffle the deck. The problem is that there are 52! (52 factorial) ways to shuffle a standard 52 card deck. That happens to be 80658175170943878571660636856403766975289505440883277824000000000000 ways, which is far bigger than the number of unique ways we can get from setting a 32-bit seed.
Thankfully, Mersenne Twister can accept seeds between 0 and 2^19937-1. 52! is a big number but all combinations can be represented with a seed of 226 bits (or ~29 bytes). The Standard Library allow std::mt19937 to accept a seed up to 2^19937-1 (~624 bytes of data) if we so choose. But since we need only 226 bits the following code would allow us to create 29 bytes of non-deterministic data to be used as a suitable seed for std::mt19937:
// rd is an array to hold 29 bytes of seed data which covers the 226 bits we need */
std::array<unsigned char, 29> seed_data;
std::random_device rd;
std::generate_n(seed_data.data(), seed_data.size(), std::ref(rd));
std::seed_seq seq(std::begin(seed_data), std::end(seed_data));
// Set the seed for Mersenne *using the 29 byte sequence*
std::mt19937 g(seq);
Then all you need to do is call shuffle with code like:
std::shuffle(cards.begin(),cards.end(), g);
On Windows VC++/CLI you will get a warning that you'll want to suppress with the code above. So at the top of the file (before other includes) you can add this:
#define _SCL_SECURE_NO_WARNINGS 1

Bash string compression

I'd like to know how I can compress a string into fewer characters using a shell script. The goal is to take a Mac's serial number and MAC address then compress those values into a 14 character string. I'm not sure if this is possible, but I'd like to hear if anyone has any suggestions.
Thank you
Your question is way too vague to result in a detailed answer.
Given your restriction of a 14 character string output, you won't be able to use "real" compression (like zip), due to the overhead. This leaves you with simple algorithms, like RLE or bit concatenation.
If by "string" you mean "printable string", i.e. only about 62 or so values are usable in a character (depending on the exact printable set you choose), then you have an additional space constraint.
A handy trick you could use with the MAC address part is, since it belongs to an Apple device, you already know that the first three values (AA:BB:CC) are one of 297 combinations, so you could save 6 characters (plus 2 for the colons) worth of information into 2+ characters (depending on your output character set, see above).
The remaining three MAC address values are base-16 (0-9, A-F), so you could "compress" this information slightly as well.
A similar analysis can be done for the Mac serial number (which values can it take? how much space can be saved?).
The effort to do this in bash would be disproportionate though. I'd highly recommend a C (or other programming language) approach.
Cheating answer
Get someone at Apple to give you access to the database I'm assuming they have which matches devices' serial numbers to MAC addresses. Then you can just store the MAC address and look it up in the database whenever you need the serial number. The 64-bit MAC address can easily be stored in 12 characters with standard base64 encoding.
Frustrating answer
You have to make some unreliable assumptions just to make this approachable. You can fix the assumptions later, but I don't know if it would still fit in 14 characters. Personally, I have no idea why you want to save space by reprocessing the serial and MAC numbers, but here's how I'd start.
Simplifying assumptions
Apple will never use MAC address prefixes beyond the 297 combinations mentioned in Sir Athos' answer.
The "new" Mac serial number format in this article from
2010 is the only format Apple has used or ever will use.
Core concepts of encoding
You're taking something which could have n possible values and you're converting it into something else with n possible values.
There may be gaps in the original's possible values, such as if Apple cancels building a manufacturing plant after already assigning it a location code.
There may be gaps in your encoded form's possible values, perhaps in anticipation of Apple doing things that would fill the gaps.
Abstract integer encoding
Break apart the serial number into groups as "PPP Y W SSS CCCC" (like the article describes)
Make groups for the first 3 bytes and last 5 bytes of the MAC address.
Translate each group into a number from 0 to n-1 where n is the number of possible values for something in the group. As far as I can tell from the article, the values are n_P=36^3, n_Y=20, n_W=27, n_S=3^3, and n_C=36^4. The first 3 MAC bytes has 297 values and the last 5 have 2^(8*5)=2^40 values.
Set a variable, i, to the value of the first group's number.
For each remaining group's number, multiply i by the number of values possible for the group, and then add the number to i.
Base n encoding
Make a list of n characters that you want to use in your final output.
Print the character in your list at index i%n.
Subtract the modulus from the integer encoding and divide by n.
Repeat 1 and 2 until the integer becomes 0.
Result
This results in a total of 36^3 * 20 * 27 * 36 * 7 * 297 * 2^40 ~= 2 * 10^24 combinations. If you let n=64 for a custom base64 encoding
(without any padding characters), then you can barely fit that into ceiling(log(2 * 10^24) / log(64)) = 14 characters. If you use all 95 printable ASCII characters, then you can fit it into ceiling(log(2 * 10^24) / log(95)) = 13 characters.
Fixing the assumptions
If you're trying to build something that uses this and are determined to make it work, here's what you need to do to make it solid, along with some tips.
Do the same analysis on every other serial number format you may care about. You might want to see if there's any redundant information between the serial and MAC numbers.
Figure out a way to detect between serial number formats. Adding an extra thing at the end of the abstract number encoding can enable you to track which version it uses.
Think long and careful about the format you're making. It's a lot easier to make changes before you're stuck with backwards compatibility.
If you can, use a language that's well suited for mapping between values, doing a lot of arithmetic, and handling big numbers. You may be able to do it in Bash, but it'd probably be easier in, say, Python.

Best algorithm for hashing number values?

When dealing with a series of numbers, and wanting to use hash results for security reasons, what would be the best way to generate a hash value from a given series of digits? Examples of input would be credit card numbers, or bank account numbers. Preferred output would be a single unsigned integer to assist in matching purposes.
My feeling is that most of the string implementations appear to have low entropy when run against such a short range of characters and because of that, the collision rate might be higher than when run against a larger sample.
The target language is Delphi, however answers from other languages are welcome if they can provide a mathmatical basis which can lead to an optimal solution.
The purpose of this routine will be to determine if a previously received card/account was previously processed or not. The input file could have multiple records against a database of multiple records so performance is a factor.
With security questions all the answers lay on a continuum from most secure to most convenient. I'll give you two answers, one that is very secure, and one that is very convenient. Given that and the explanation of each you can choose the best solution for your system.
You stated that your objective was to store this value in lieu of the actual credit card so you could later know if the same credit card number is used again. This means that it must contain only the credit card number and maybe a uniform salt. Inclusion of the CCV, expiration date, name, etc. would render it useless since it the value could be different with the same credit card number. So we will assume you pad all of your credit card numbers with the same salt value that will remain uniform for all entries.
The convenient solution is to use a FNV (As Zebrabox and Nick suggested). This will produce a 32 bit number that will index quickly for searches. The downside of course is that it only allows for at max 4 billion different numbers, and in practice will produce collisions much quicker then that. Because it has such a high collision rate a brute force attack will probably generate enough invalid results as to make it of little use.
The secure solution is to rely on SHA hash function (the larger the better), but with multiple iterations. I would suggest somewhere on the order of 10,000. Yes I know, 10,000 iterations is a lot and it will take a while, but when it comes to strength against a brute force attack speed is the enemy. If you want to be secure then you want it to be SLOW. SHA is designed to not have collisions for any size of input. If a collision is found then the hash is considered no longer viable. AFAIK the SHA-2 family is still viable.
Now if you want a solution that is secure and quick to search in the DB, then I would suggest using the secure solution (SHA-2 x 10K) and then storing the full hash in one column, and then take the first 32 bits and storing it in a different column, with the index on the second column. Perform your look-up on the 32 bit value first. If that produces no matches then you have no matches. If it does produce a match then you can compare the full SHA value and see if it is the same. That means you are performing the full binary comparison (hashes are actually binary, but only represented as strings for easy human reading and for transfer in text based protocols) on a much smaller set.
If you are really concerned about speed then you can reduce the number of iterations. Frankly it will still be fast even with 1000 iterations. You will want to make some realistic judgment calls on how big you expect the database to get and other factors (communication speed, hardware response, load, etc.) that may effect the duration. You may find that your optimizing the fastest point in the process, which will have little to no actual impact.
Also, I would recommend that you benchmark the look-up on the full hash vs. the 32 bit subset. Most modern database system are fairly fast and contain a number of optimizations and frequently optimize for us doing things the easy way. When we try to get smart we sometimes just slow it down. What is that quote about premature optimization . . . ?
This seems to be a case for key derivation functions. Have a look at PBKDF2.
Just using cryptographic hash functions (like the SHA family) will give you the desired distribution, but for very limited input spaces (like credit card numbers) they can be easily attacked using brute force because this hash algorithms are usually designed to be as fast as possible.
UPDATE
Okay, security is no concern for your task. Because you have already a numerical input, you could just use this (account) number modulo your hash table size. If you process it as string, you might indeed encounter a bad distribution, because the ten digits form only a small subset of all possible characters.
Another problem is probably that the numbers form big clusters of assigned (account) numbers with large regions of unassigned numbers between them. In this case I would suggest to try highly non-linear hash function to spread this clusters. And this brings us back to cryptographic hash functions. Maybe good old MD5. Just split the 128 bit hash in four groups of 32 bits, combine them using XOR, and interpret the result as a 32 bit integer.
While not directly related, you may also have a look at Benford's law - it provides some insight why numbers are usually not evenly distributed.
If you need security, use a cryptographically secure hash, such as SHA-256.
I needed to look deeply into hash functions a few months ago. Here are some things I found.
You want the hash to spread out hits evenly and randomly throughout your entire target space (usually 32 bits, but could be 16 or 64-bits.) You want every character of the input to have and equally large effect on the output.
ALL the simple hashes (like ELF or PJW) that simply loop through the string and xor in each byte with a shift or a mod will fail that criteria for a simple reason: The last characters added have the most effect.
But there are some really good algorithms available in Delphi and asm. Here are some references:
See 1997 Dr. Dobbs article at burtleburtle.net/bob/hash/doobs.html
code at burtleburtle.net/bob/c/lookup3.c
SuperFastHash Function c2004-2008 by Paul Hsieh (AKA HsiehHash)
www.azillionmonkeys.com/qed/hash.html
You will find Delphi (with optional asm) source code at this reference:
http://landman-code.blogspot.com/2008/06/superfasthash-from-paul-hsieh.html
13 July 2008
"More than a year ago Juhani Suhonen asked for a fast hash to use for his
hashtable. I suggested the old but nicely performing elf-hash, but also noted
a much better hash function I recently found. It was called SuperFastHash (SFH)
and was created by Paul Hsieh to overcome his 'problems' with the hash functions
from Bob Jenkins. Juhani asked if somebody could write the SFH function in basm.
A few people worked on a basm implementation and posted it."
The Hashing Saga Continues:
2007-03-13 Andrew: When Bad Hashing Means Good Caching
www.team5150.com/~andrew/blog/2007/03/hash_algorithm_attacks.html
2007-03-29 Andrew: Breaking SuperFastHash
floodyberry.wordpress.com/2007/03/29/breaking-superfasthash/
2008-03-03 Austin Appleby: MurmurHash 2.0
murmurhash.googlepages.com/
SuperFastHash - 985.335173 mb/sec
lookup3 - 988.080652 mb/sec
MurmurHash 2.0 - 2056.885653 mb/sec
Supplies c++ code MurmurrHash2.cpp and aligned-read-only implementation -
MurmurHashAligned2.cpp
//========================================================================
// Here is Landman's MurmurHash2 in C#
//2009-02-25 Davy Landman does C# implimentations of SuperFashHash and MurmurHash2
//landman-code.blogspot.com/search?updated-min=2009-01-01T00%3A00%3A00%2B01%3A00&updated-max=2010-01-01T00%3A00%3A00%2B01%3A00&max-results=2
//
//Landman impliments both SuperFastHash and MurmurHash2 4 ways in C#:
//1: Managed Code 2: Inline Bit Converter 3: Int Hack 4: Unsafe Pointers
//SuperFastHash 1: 281 2: 780 3: 1204 4: 1308 MB/s
//MurmurHash2 1: 486 2: 759 3: 1430 4: 2196
Sorry if the above turns out to look like a mess. I had to just cut&paste it.
At least one of the references above gives you the option of getting out a 64-bit hash, which would certainly have no collisions in the space of credit card numbers, and could be easily stored in a bigint field in MySQL.
You do not need a cryptographic hash. They are much more CPU intensive. And the purpose of "cryptographic" is to stop hacking, not to avoid collisions.
If performance is a factor I suggest to take a look at a CodeCentral entry of Peter Below. It performs very well for large number of items.
By default it uses P.J. Weinberger ELF hashing function. But others are also provided.
By definition, a cryptographic hash will work perfectly for your use case. Even if the characters are close, the hash should be nicely distributed.
So I advise you to use any cryptographic hash (SHA-256 for example), with a salt.
For a non cryptographic approach you could take a look at the FNV hash it's fast with a low collision rate.
As a very fast alternative, I've also used this algorithm for a few years and had few collision issues however I can't give you a mathematical analysis of it's inherent soundness but for what it's worth here it is
=Edit - My code sample was incorrect - now fixed =
In c/c++
unsigned int Hash(const char *s)
{
int hash = 0;
while (*s != 0)
{
hash *= 37;
hash += *s;
s++;
}
return hash;
}
Note that '37' is a magic number, so chosen because it's prime
Best hash function for the natural numbers let
f(n)=n
No conflicts ;)

Resources