how does a pointer becomes of adress 0xabababababababab or 0xfeeefeeefeeefeee? - data-structures

Im working on a data structures assignmnet and something very strange is happening ,
my structure contains of 4 avl trees , in the destructor of the structre I delete the 4 trees using delete (the trees are allocated with new in the constructor) , a method of the class is called Quit and all it does is "delete this" calling the destructor , when calling Quit and before it operates any command (before doing the "delete this" ) two of the avl trees are already null and one is with adress 0x1 and one is with legal adress but the right and left sons of the root are 0xabababababababab and 0xfeeefeeefeeefeee
so when calling the destructor and trying to delete them a SEGMENTAION FAULT or SEGTRAP accures , because 0xabababababababab is not NULL and there for the fucnction does not enter the if(!node){return;} and calls the recursively for the right son , and that where the seg fault happens , because accessing fields of 0xababababababab is like accessing fields of NULL
a pic of the structures trees before entering "Quit"
what I dont understand is when does this happen to the trees ? because when debugging , in the end of the last function before Quit the fields and trees are all 100% as expected to be so nothing of them is deleted of changed in any way in the code.
I spent days trying to find the problem , PLEASE HELP.
THANK YOU IN ADVANCE.

0xABABABAB is used by HeapAlloc() to mark "no man's land" guard bytes after allocated memory on the heap. If you access this, you probably have a buffer overflow.
0xFEEEFEEE is used by HeapFree() to mark freed heap memory. If you access this, you probably have a double free.
Note that the memory layout is different in Debug Build and Release Build. You may not get that error in debug builds.
Also note that the memory layout is different when running the app within an IDE (debugger attached from start) and when running without a debugger. You may not get that error when running from inside the IDE.

Related

C++ function for "kernel memory check" before accessing

I am developing a simple device driver for study. With a lot of testing, I am creating so many errors which finally leads my computer to blue screen. I am sure that the reason for this is memory crash. So now I want to check if my code can access to Kernel memory before going further.
My question is what function can check whether it is accessible or not in kernel memory. For instance, there is a pointer structure with two fields and I want to access the first field which is also a pointer but do now know whether it really has an accessible value or just trash value.
In this given context, I need to check it out to make sure that I am not getting blue screen.
Thanks in advance!
this is impossible for kernel memory. you must know exactly are kernel address is valid and will be valid during access. if you get address from user mode - you can and must use ProbeForRead or ProbeForWrite. but this is only for user-mode buffer. for any kernel memory (even valid and resident) this function just raise exception. from invalid access to kernel memory address no any protection. try - except handler not help here - you just got PAGE_FAULT_IN_NONPAGED_AREA bug check
For instance, there is a pointer structure with two fields and I want
to access the first field which is also a pointer but do now know
whether it really has an accessible value or just trash value.
from where you got this pointer ? who fill this structure ? you must not check. you must know at begin that this pointer is valid and context of structure will be valid during time you use it. otherwise your code already wrong and buggy

need explanation on why does EXCEPTION_ACCESS_VIOLATION occur

Hi I know that this error which I'm going to show can't be fixed through code. I just want to know why and how is it caused and I also know its due to JVM trying to access address space of another program.
A fatal error has been detected by the Java Runtime Environment:
EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x6dcd422a, pid=4024, tid=3900
JRE version: 6.0_14-b08
Java VM: Java HotSpot(TM) Server VM (14.0-b16 mixed mode windows-x86 )
Problematic frame:
V [jvm.dll+0x17422a]
An error report file with more information is saved as:
C:\PServer\server\bin\hs_err_pid4024.log
If you would like to submit a bug report, please visit:
http://java.sun.com/webapps/bugreport/crash.jsp
The book "modern operating systems" from Tanenbaum, which is available online here:
http://lovingod.host.sk/tanenbaum/Unix-Linux-Windows.html
Covers the topic in depth. (Chapter 4 is in Memory Management and Chapter 4.8 is on Memory segmentation). The short version:
It would be very bad if several programs on your PC could access each other's memory. Actually even within one program, even in one thread you have multiple areas of memory that must not influence one other. Usually a process has at least one memory area called the "stack" and one area called the "heap" (commonly every process has one heap + one stack per thread. There MAY be more segments, but this is implementation dependent and it does not matter for the explanation here). On the stack things like you function's arguments and your local variables are saved. On the heap are variables saved that's size and lifetime cannot be determined by the compiler at compile time (that would be in Java everything that you use the "new"-Operator on. Example:
public void bar(String hi, int myInt)
{
String foo = new String("foobar");
}
in this example are two String objects: (referenced by "foo" and "hi"). Both these objects are on the heap (you know this, because at some point both Strings were allocated using "new". And in this example 3 values are on the stack. This would be the value of "myInt", "hi" and "foo". It is important to realize that "hi" and "foo" don't really contain Strings directly, but instead they contain some id that tells them were on the heap they can find the String. (This is not as easy to explain using java because java abstracts a lot. In C "hi" and "foo" would be a Pointer which is actually just an integer which represents the address in the heap where the actual value is stored).
You might ask yourself why there is a stack and a heap anyway. Why not put everything in the same place. Explaining that unfortunately exceeds the scope of this answer. Read the book I linked ;-). The short version is that stack and heap are differently managed and the separation is done for reasons of optimization.
The size of stack and heap are limited. (On Linux execute ulimit -a and you'll get a list including "data seg size" (heap) and "stack size" (yeah... stack :-)).).
The stack is something that just grows. Like an array that gets bigger and bigger if you append more and more data. Eventually you run out of space. In this case you may end up writing in the memory area that does not belong to you anymore. And that would be extremely bad. So the operating systems notices that and stops the program if that happens. On Linux you get a "Segmenation fault" and on Windows you get an "Access violation".
In other languages like in C, you need to manage your memory manually. A tiny error can easily cause you to accidentally write into some space that does not belong to you. In Java you have "automatic memory management" which means that the JVM does all this for you. You don't need to care and that takes loads from your shoulders as a developer (it usually does. I bet there are people out there who would disagree about the "loads" part ;-)). This means that it /should/ be impossible to produce segmentation faults with java. Unfortunatelly the JVM is not perfect. Sometimes it has bugs and screws up. And then you get what you got.

GlobalFree() causing user breakpoint... memory block is fixed, not locked, single module, no DLL

At one point in my program I am calling GlobalFree() to release a memory buffer I allocated with GlobalAlloc() using GMEM_FIXED flag. There is nothing that could be locking this block. However, when I call GlobalFree() after referencing the data (and all of the internal data is still the same as it was), the program stops and says it has encountered a user breakpoint from code in the GlobalFree() code.
Any ideas what could cause this?
The heap functions typically call DebugBreak() - which implements a user-breakpoint - when they detect that the heap structures have been damaged.
The implication is you have written past the end (or the beginning) of the allocated area.

Partial unmap of Win32 memory-mapped file

I have some code (which I cannot change) that I need to get working in a native Win32 environment. This code calls mmap() and munmap(), so I have created those functions using CreateFileMapping(), MapViewOfFile(), etc., to accomplish the same thing. Initially this works fine, and the code is able to access files as expected. Unfortunately the code goes on to munmap() selected parts of the file that it no longer needs.
x = mmap(0, size, PROT_READ, MAP_SHARED, fd, 0);
...
munmap(x, hdr_size);
munmap(x + foo, bar);
...
Unfortunately, when you pass a pointer into the middle of the mapped range to UnmapViewOfFile() it destroys the entire mapping. Even worse, I can't see how I would be able to detect that this is a partial un-map request and just ignore it.
I have tried calling VirtualFree() on the range but, unsurprisingly, this produces ERROR_INVALID_PARAMETER.
I'm beginning to think that I will have to use static/global variables to track all the open memory mappings so that I can detect and ignore partial unmappings, but I hope you have a better idea...
edit:
Since I wasn't explicit enough above: the docs for UnMapViewOfFile do not accurately reflect the behavior of that function.
Un-mapping the whole view and remapping pieces is not a good solution because you can only suggest a base address for a new mapping, you can't really control it. The semantics of munmap() don't allow for a change to the base address of the still-mapped portion.
What I really need is a way to find the base address and size of a already-mapped memory area.
edit2: Now that I restate the problem that way, it looks like the VirtualQuery() function will suffice.
It is quite explicit in the MSDN Library docs for UnmapViewOfFile:
lpBaseAddress A pointer to the
base address of the mapped view of a
file that is to be unmapped. This
value must be identical to the value
returned by a previous call to the
MapViewOfFile or MapViewOfFileEx
function.
You changing the mapping by unmapping the old one and creating a new one. Unmapping bits and pieces isn't well supported, nor would it have any useful side-effects from a memory management point of view. You don't want to risk getting the address space fragmented.
You'll have to do this differently.
You could keep track each mapping and how many pages of it are still allocated by the client and only free the mapping when that counter reaches zero. The middle sections would still be mapped, but it wouldn't matter since the client wouldn't be accessing that memory anyway.
Create a global dictionary of memory mappings through this interface. When a mapping request comes through, record the address, size and number of pages that are in the range. When a unmap request is made, find out which mapping owns that address and decrease the page count by the number of pages that are being freed. When that count reaches zero, really unmap the view.

ACCESS_VIOLATION_BAD_IP

I am trying to figure out a crash in my application.
WinDbg tells me the following: (using dashes in place of underscores)
LAST-CONTROL-TRANSFER: from 005f5c7e to 6e697474
DEFAULT-BUCKET-ID: BAD_IP
BUGCHECK-STR: ACCESS-VIOLATION
It is obvious to me that 6e697474 is NOT a valid address.
I have three questions:
1) Does the "BAD_IP" bucket ID mean "Bad Instruction Pointer?"
2) This is a multi-threaded application so one consideration was that the object whose function I was attempting to call went out of scope. Does anyone know if that would lead to the same error message?
3) What else might cause an error like this? One of my co-workers suggested that it might be a stack overflow issue, but WinDBG in the past has proven rather reliable at detecting and pointing these out. (not that I'm sure about the voodoo it does in the background to diagnose that).
Bad-IP is Bad Instruction Pointer. From the description of your problem, I would assume it is a stack corruption instead of a stack overflow.
I can think of the following things that could cause a jump to invalid address, in decreasing order of likelyhood:
calling a member function on a deallocated object. (as you suspect)
calling a member function of a corrupted object.
calling a member function of an object with a corrupted vtable.
a rouge pointer overwriting code space.
I'd start debugging by finding the code at 005f5c7e and looking at what objects are being accessed around there.
It may be helpful to ask, what could have written the string 'ttie' to this location? Often when you have bytes in the 0x41-0x5A, 0x61-0x7A ([a-zA-Z]) range, it indicates a string buffer overflow.
As to what was actually overwritten, it could be the return address, some other function pointer you're using, or occasionally that a virtual function table pointer (vfptr) in an object got overwritten to point to the middle of a string.

Resources