#include "mbed.h"
Timeout flipper;
DigitalOut led1(LED1);
DigitalOut led2(LED2);
void flip()
{
led2 = !led2;
}
int main()
{
led2 = 1;
flipper.attach(&flip, 2.0); // setup flipper to call flip after 2 seconds
// spin in a main loop. flipper will interrupt it to call flip
while (1) {
led1 = !led1;
ThisThread::sleep_for(200);
}
}
With this code, is it possible to vary the amount of time the Timeout flipper will be attached for so it could start at 2 seconds, then 3 then 4 etc? And how?
Related
It's my first time learning arduino uno and I do not know what to do
const int ledPin = LED_BUILTIN;
int ledState = LOW;
unsigned long previousMillis = 0;
const long interval = 1000;
void setup() {
pinMode(ledPin, OUTPUT);
}
void loop() {
unsigned long currentMillis = millis();
if (currentMillis - previousMillis >= interval) {
for(int interval = 500; interval >= 20; interval++)
previousMillis = currentMillis;
if (ledState == LOW) {
ledState = HIGH;
} else {
ledState = LOW;
}
digitalWrite(ledPin, ledState);
}
}
The delay for every interval the led turns On and Off increases by 1 seconds everytime the loop restarts.
Please make sure you ask your question in the question itself, not the title and also give us some more information about what you're trying to accomplish, what's working and what isn't working so we can help.
If I understand correctly, you want the LED to stay on longer and longer each time it blinks. First cycle 1 second, second cycle 2 seconds, third cycle 3 seconds, etc. You are pretty close, just need some tweaking of your logic.
void loop() {
unsigned long currentMillis = millis();
if (currentMillis - previousMillis >= interval) { //Check if LED duration has expired
//Toggle LED
if (ledState == LOW) {
ledState = HIGH;
} else {
ledState = LOW;
}
interval += 1000; //Increase the interval by 1 second
digitalWrite(ledPin, ledState); //Set the LED
previousMillis = currentMillis; //Set the time of the last transition to now
}
}
I'm currently trying to set up a fermentation specific gravity monitor, using a tilt sensor. The process can take several weeks, and must be contained in a sterile container, so must be battery powerered. I'm using a slightly modified ESP8266-01, which enters sleep mode then wakes once an hour to take a measurement, transmit the data, and return to sleep mode. I'm using an MPU6050 for the tilt sensor. Firstly, I can't seem to put the mpu into sleep mode when the esp is off, it always seems to take around 4mA, and secondly, I only need one axis, is it possible to disable everything else to limit power consumption further? I can't seem to find anything in the manual to disable axis, only to calibrate them. my code is below
experimenting with the registers below seem to make no difference, adding them, taking them out altogether, still takes around 4mA. Tried setting to 1 to put the mpu to sleep at the end of the cycle but makes no difference.
Wire.write(0x6B);
Wire.write(0);
I'm very new to this and im struggling to interpret the manual when it refers to bit6 in addr 6b, how do i set bit 6?
If i could restict the mpu to only 1 axis, no acceleration, and to deep sleep inbetween measurements I should be able to get the power consumption around 0.5mA which gives me agood battery life using a single 18650. Any advice would be greatly appreciated!
#include <ESP8266WiFi.h>
#include <PubSubClient.h>
#include <OneWire.h>
#include <DallasTemperature.h>
#include "MPU6050.h"
#include "I2Cdev.h"
#include "Wire.h"
// Update these with values suitable for your network.
const char* ssid = "****";
const char* password = "******";
IPAddress server(192, 168, 1, 90);
WiFiClient espClient5;
PubSubClient client(espClient5);
long lastMsg = 0;
char msg[50];
const uint8_t scl = 5; //D1
const uint8_t sda = 4; //D2
int val;
int prevVal = 0;
String pubString;
char gravity[50];
MPU6050 mpu;
const int sleepTimeS = 10; //only 10 seconds for testing purposes, set to
1hr when operational
int counter=0;
int16_t ax, ay, az;
int16_t gx, gy, gz;
void setup_wifi() {
delay(10);
// We start by connecting to a WiFi network
Serial.println();
Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
randomSeed(micros());
Serial.println("");
Serial.println("WiFi connected");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
}
void callback(char* topic, byte* payload, unsigned int length) { //not
required in this application
}
void reconnect() {
// Loop until we're reconnected
while (!client.connected()) {
Serial.print("Attempting MQTT connection...");
// Create a random client ID
String clientId = "test";
clientId += String(random(0xffff), HEX);
// Attempt to connect
if (client.connect(clientId.c_str())) {
Serial.println("connected");
// Once connected, publish an announcement...
client.publish("AliveRegister", "FermentMon");
} else {
Serial.print("failed, rc=");
Serial.print(client.state());
Serial.println(" try again in 5 seconds");
// Wait 5 seconds before retrying
delay(5000);
}
}
}
#define ONE_WIRE_BUS 2 // D4 on physical board
OneWire oneWire(ONE_WIRE_BUS);
DallasTemperature DS18B20(&oneWire);
float prevTemp = 0;
void setup() {
counter = 0;
Serial.begin(9600);
Wire.begin(0,2);
Wire.write(0x6B); //PWR_MGMT_1 register
Wire.write(0); // set to zero wakes teh 6050
Wire.endTransmission(true);
delay(100);
setup_wifi();
client.setServer(server, 1883);
client.setCallback(callback);
if (!client.connected()) {
reconnect();
}
Serial.println("Initialize MPU");
mpu.initialize();
Serial.println(mpu.testConnection() ? "Connected" : "Connection failed");
float temp;
DS18B20.requestTemperatures();
temp = DS18B20.getTempCByIndex(0); // first temperature sensor
char buff[100];
dtostrf(temp, 0, 2, buff);
temp = temp + 0.5;
int tRound = int(temp);
client.publish("Fermenter/temperature", buff);
Serial.print("Fermenter Temperature: ");
Serial.println(temp);
prevTemp = tRound;
mpu.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);
val = map(ax, -17000, 17000, 0, 180);
pubString = String(val);
pubString.toCharArray(gravity, pubString.length() + 1);
client.publish("Fermenter/angle", gravity);
Serial.print("Gravity angle: ");
Serial.println(val);
delay(500);
// counter = counter+1;
Serial.println("sleep mode");
Wire.write(0x6B); //PWR_MGMT_1 register
Wire.write(1); // set to zero wakes teh 6050
// sleep
ESP.deepSleep(sleepTimeS * 1000000);
delay(2000);
}
void loop() {
client.loop();
}
I'm very new to this and im struggling to interpret the manual when it refers to bit6 in addr 6b, how do i set bit 6?
Setting a bit is simple.
Use the follow functions to avoid any brain storming.
// Write register bit
void writeRegisterBit(uint8_t reg, uint8_t pos, bool state)
{
uint8_t value;
value = readRegister8(reg);
if (state)
{
value |= (1 << pos);
}
else
{
value &= ~(1 << pos);
}
writeRegister8(reg, value);
}
// Write 8-bit to register
void writeRegister8(uint8_t reg, uint8_t value)
{
Wire.beginTransmission(MPU_addr);
#if ARDUINO >= 100
Wire.write(reg);
Wire.write(value);
#else
Wire.send(reg);
Wire.send(value);
#endif
Wire.endTransmission();
}
Example Usage: writeRegisterBit(MPU6050_REG_INT_PIN_CFG, 5, 1); //Register 37;Interrupt Latch Enable
For your application:
void acclSetSleepEnabled(bool state)
{
writeRegisterBit(MPU6050_REG_PWR_MGMT_1, 6, state);
}
If i could restict the mpu to only 1 axis, no acceleration, and to deep sleep inbetween measurements I should be able to get the power consumption around 0.5mA which gives me agood battery life using a single 18650
To enter low power accelerometer mode use the following function:
void lowPowerAccel(uint8_t frequency) {
uint8_t value;
value = readRegister8(MPU6050_REG_PWR_MGMT_2);
value &= 0b00111000;
value |= (frequency << 6) | 0b111;
writeRegister8(MPU6050_REG_PWR_MGMT_2, value);
value = readRegister8(MPU6050_REG_PWR_MGMT_1);
value &= 0b10010111;
value |= 0b00111000;
writeRegister8(MPU6050_REG_PWR_MGMT_1, value);
}
This lowPowerAccel function also puts the gyro to standy mode. The function needs a wake up frequency parameter.
This is defined as follows:
/*
* LP_WAKE_CTRL | Wake-up Frequency
* -------------+------------------
* 0 | 1.25 Hz
* 1 | 2.5 Hz
* 2 | 5 Hz
* 3 | 10 H
*/
#define LP_WAKE_CTRL_1_25 0x00
#define LP_WAKE_CTRL_2_5 0x01
#define LP_WAKE_CTRL_5 0x02
#define LP_WAKE_CTRL_10 0x03
I hope, I could answer some of your questions.
Good luck! :)
Are you using a breakout board for the MPU6050? e.g. GY-521. Often they use linear regulators and leds which will consume additional power. It may be necessary to remove these and run the IMU from a direct power source.
Each register in the MPU6050 is 8 bits wide. When setting an individual bit to a desired value you can either use bitwise manipulation (not practical here as we aren't directly interacting with the registers) or directly set all of the bits in the register to the register's new state e.g. 0b00100000 ~ 0x20. Instead of writing a 1 to 0x6B when attempting to put the MPU6050 to sleep you should be writing 0x20.
https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf
Referencing page 40-42, if you want to take things a step further you can disable the temperature sensor, accelerometers, and redundant gyroscope axes to save power while the device is active.
switch(mode) {
case 0:
if (millis() - timer >= 100) {
file.play();
timer = millis();
}
break;
case 1:
if (millis() - timer >= 1000) {
file1.play();
timer = millis();
}
break;
}
I want create a time-based program like a traffic light.
It will play the sound and last 3 seconds. After 3 second, it will turn into another sound and last 10 seconds.After 10 second, it will turn into first sound. And so on. How can i count the time for two case?
The conditions you use to compare millis() and timer look of in terms of logic. You might want to change the values to be 3 and 10 seconds (instead of 0.1 and 1 seconds)
It feels like you simply need 3 states:
It will play the sound and last 3 seconds.
After 3 second, it will turn into another sound and last 10 seconds
After 10 second, it will turn into first sound.
Something like this:
int mode;
int timer;
void setup() {
println("starting in 1st mode, seconds:",second());
}
void draw() {
switch(mode) {
case 0:
if (millis() - timer >= 3000) {
println("play sound 1, seconds:",second());
timer = millis();
mode = 1;//change to the state to the next one
}
break;
case 1:
if (millis() - timer >= 3000) {
print("play sound 2, seconds:",second());
timer = millis();
mode = 2;//go to next mode
}
break;
case 2:
if (millis() - timer >= 10000) {//wait 10s
println("\n10s passed, going to 1st mode, seconds:",second());
timer = millis();
mode = 0;//go to next mode, after 10s
}
break;
}
}
In terms of timing, you should have states looping in 3s, 3s and 10s increments.
I'm not 100% if sound will play as expected, but test with some println() commands first to see if what state happens at what time you expect it to, then simply trigger the sound you need in it's right place.
demo time:
var mode = 0;
var timer;
function setup() {
createCanvas(100,100);
timer = millis()
console.log("starting in 1st mode, seconds:",second());
}
function draw() {
background(255);
text("mode: " + mode + "\nseconds: " + second(),10,10);
switch(mode) {
case 0:
if (millis() - timer >= 3000) {
console.log("play sound 1, seconds:",second());
timer = millis();
mode = 1;//change to the state to the next one
}
break;
case 1:
if (millis() - timer >= 3000) {
console.log("play sound 2, seconds:",second());
timer = millis();
mode = 2;//go to next mode
}
break;
case 2:
if (millis() - timer >= 10000) {//wait 10s
console.log("10s passed, going to 1st mode, seconds:",second());
timer = millis();
mode = 0;//go to next mode, after 10s
}
break;
}
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.5.5/p5.min.js"></script>
I can't get my pic24f04kl100 to turn on an LED at all. The below code is as simple as possible and it still doesn't turn on the LED on pin 6.
Code
#include <xc.h>
#define LED LATBbits.LATB4
#define LEDans ANSBbits.ANSB4
#define LEDtris TRISBbits.TRISB4
/* Setting up configuration bits */
_FOSCSEL(FNOSC_FRCPLL & IESO_OFF); // FRC w/PLL and int./ext. switch disabled
_FOSC(POSCMD_XT & FCKSM_CSECMD); // Pri. OSC XT mode and clk. switch on, fail-safe off
_FWDT(FWDTEN_OFF); // Watchdog timer off
void initialise();
void delay(int i);
void main() { // Main program loop
initialise(); // Intialise PIC
while (1) { // Infinite loop
LED = 1; // Set LED high
LED = 0; // Set LED low
}
}
void initialise() { // Configures the PIC
OSCCONbits.NOSC = 0b111; // Fast RC Oscillator with Postscaler and PLL module
delay(100);
CLKDIVbits.RCDIV = 0b000; // Set clock div 1:1
delay(100);
LEDans = 0;
delay(100);
LEDtris = 0; // Make LED an output
delay(100);
LED = 0; // Set LED low
}
void delay(int i) {
while(i--);
}
PICkit 3 Output
*****************************************************
Connecting to MPLAB PICkit 3...
Firmware Suite Version.....01.27.04
Firmware type..............dsPIC33F/24F/24H
Target detected
Device ID Revision = 0
The following memory area(s) will be programmed:
program memory: start address = 0x0, end address = 0x3ff
configuration memory
Programming...
Programming/Verify complete
By default B4 pin is analog. Configure it as digital by clearing the ANSB register, bit4
NOTE: Although clearing the bit DID NOT fix the problem. Moving to another pin (with less features) did. So I (fossum) made the assumption that this was at least on some level the correct answer.
The LED is blinking, but it's blinking very fast, try to put some delay between LED turn on and LED turn off.
Try this:
void main() { // Main program loop
initialise(); // Intialise PIC
while (1) { // Infinite loop
LED = 1; // Set LED high
delay(50000); //wait LED on time
LED = 0; // Set LED low
delay(50000); //wait LED off time
}
}
So I made this kind of a temperature/humidity sensor and decided to add a fire sensor feature. So it all works fine, right? No, I also decided I want a buzzer to that. Tested it, works well, so I thrown it into my project.
Started it up [project], lit up a lighter, works fine, LEDs blink, a text is shown, buzzer plays an alarm. But then, after the fire was out, the buzzer continued to play one of two tones, even though there was no fire. Here's the code, to make it all clear:
#include <LiquidCrystal.h>
#include <dht.h>
LiquidCrystal lcd(7, 6, 5, 4, 3, 2);
dht DHT;
#define FLAME 13
#define DHT11_PIN 8
#define ALARM A5
const int a9 = 9, a10 = 10, a11 = 11, a12 = 12;
byte z[8] = {
B00100,
B00000,
B11111,
B00001,
B00010,
B00100,
B11111,
B00000,
};
byte st[8] = {
0b00110,
0b01001,
0b01001,
0b00110,
0b00000,
0b00000,
0b00000,
0b00000,
};
void setup(){
lcd.begin(16, 2);
lcd.createChar(0, st);
lcd.createChar(1, z);
Serial.begin(9600);
pinMode((a9, a10, a11, a12), OUTPUT);
pinMode(FLAME, INPUT);
pinMode(ALARM, OUTPUT);
}
void loop() {
// Flame sensor code for Robojax.com
int fire = digitalRead(FLAME);// read FLAME sensor
if(fire == HIGH)
{
analogWrite(a9, 255);
analogWrite(a10, 255);
lcd.setCursor(5, 0);
lcd.print("Po");
lcd.print(char(1));
lcd.print("ar!");
tone(ALARM, 4300);
delay(150);
analogWrite(a9, 0);
analogWrite(a10, 0);
lcd.clear();
tone(ALARM, 3500);
delay(150);
} else {
lcd.createChar(0, st);
int chk = DHT.read11(DHT11_PIN);
lcd.home();
lcd.print("Temp.: ");
lcd.print(DHT.temperature);
if(DHT.temperature >= 20.00 && DHT.temperature < 25) {
analogWrite(a11, 255);
delay(750);
analogWrite(a11, 0);
delay(750);
} else if(DHT.temperature >= 25 && DHT.temperature < 30) {
analogWrite(a10, 255);
delay(250);
analogWrite(a10, 0);
delay(250);
} else if(DHT.temperature >= 30) {
analogWrite(a9, 255);
}
lcd.print(char(0));
lcd.print("C");
lcd.setCursor(0, 1);
lcd.print("Wilg.: ");
lcd.print(DHT.humidity);
if(DHT.humidity >= 45.00 && DHT.humidity < 60.00) {
digitalWrite(a12, HIGH);
delay(250);
digitalWrite(a12, LOW);
delay(250);
} else if(DHT.humidity >= 60.00) {
digitalWrite(a12, HIGH);
}
lcd.print(" %");
delay(750);
}
delay(200);
}
So, what I mean is that even though fire is changed from HIGH to LOW and other part of the code is executed, the buzzer continues to play.
What am I doing wrong?
Check the documentation for tone:
A duration can be specified, otherwise the wave continues until a call
to noTone().
So, you probably need to reset your tone on every loop beginning before checking the values of the sensors (or explicitly invoke notone on the LOW branch), or use the 3-arg version of tone.
I have no idea how tone and delay might interact, though.
I'd probably make the actual tone sounding routine its own task. The idea is that you would start the alarm task and then reset it when appropriate. But for now make sure your state is reset at the beginning of every loop, or each branch resets anything it has to explicitly, if tasks sound too advanced.
Make sure you learn the basic "print" debugging in the Arduino world. Simple write logging to the serial port where it can be read on the IDE is invaluable.
Finally: use functions! If you put everything in loop your programs will get unreadable as they grow. For example, if you have some state you want to reset every time (e.g., running tasks like tones, values, flags) then create an init() function that loop calls first so any given loop has good starting state.
Limitations of the Piezo Buzzer
Here are some things to consider when using the piezo buzzer:
You can’t use tone() while also using analogWrite() on pins 3 or 11