Performance for range of effect in city builder - data-structures

I am working on a city building game where all buildings are axis aligned rectangles. Currently I am using spatial hashing to detect if the insertion of a building intersects a building in the board.
Now I am implementing an effect system where every building placed has some effects that they can give to other buildings within a specific range. This happens during placement of a new building into the board.
Basically how it should work is, if I place a building within the range of another building in the board, the building in the board should receive the effects that the building I just placed has, and the building that I am placing should also receive the effects that the building in the board has. Basically like a handshake. This should happen with every building that is in the range of another building and will only take place and be calculated when a new building is inserted into the board.
Another thing to keep in mind is that if a building is already in the board and a new building is placed within its range, that new building should receive the effects of the building already in the board even if the other building does not have this building in its range. Thus this would be a one way transfer of effects and not a "handshake".
I currently have the exchange of effects working as it should, but its slow because I am checking every building range against every building. Thus the more buildings you place, the slower it gets.
I am looking for a way to make this faster whether it means changing from spatial hashing to some other spatial partitioning. I am currently reading Hierarchical Hash Grids but I don't know if this will benefit me at all.

Related

Can a CNN recognize the difference in size if the images are the same?

Could a CNN tell the difference between different size range of the same organism? Like a puppy vs a adult or a child vs an adult? Or more like a large fly vs a small fly, where they look identical but one is just larger than the other?
This is a tricky question to answer but usually theoretical CNN is able to do. It is mainly dependent on the training data itself. In case of a child vs adult, you can gather a dataset that includes alot of variances in sizes and ages in order to make sure that you will have CNN model that able to find patterns and generalize at the end. At the end, the CNN will learn many other features that make the classification scale or size invariant (In dependent of Size) such as shapes,colors, clothes and face features ....etc. Such Intra-class classification problems, it is not easily tackled with traditional supervised learning and therefore some researchers are applying an approach called "Deep Metric Learning".
Metric learning is the task of learning a distance function over objects. A metric or distance function has to obey four axioms: non-negativity, identity of indiscernibles, symmetry and subadditivity (or the triangle inequality). In practice, metric learning algorithms ignore the condition of identity of indiscernibles and learn a pseudo-metric.Wiki Definition
It would be better to differentiate the metric that you mention in the question. At first, it is a different task to recognize age and size.
About the age, yes, it is doable. For deep learning-based approach, you will need appropriate data. For non-training based approach (old-school image processing), you would need to create some metrics for each object based on age (counting the wrinkle, white hair etc. for humans)
About the size, unfortunately, it is still under research and it is not clear to mention if it is properly doable or not. Whenever we mention object size recognition from a single image, there are more things to consider. The first thing is the perspective. If the object found in the image is large with respect to the image coordinates, is it close to the camera, even though its size is tiny, hence, it is showing as large or it is really huge but too far away from the camera? Such a problem may be overcome by knowing the object geometry in prior and by developing an algorithm based on that geometry along with deep learning. However, current deep learning technology is not accurate enough to distinguish the dimensions and location, hence object geometry precisely yet.
Another alternative would be to control the environment. For example, if you know that both objects lie on the same plane (i.e. on the table, next to each other) in the real world, the rest is a trivial problem to resolve.

When to store quaternion vs matrix in static and dynamic objects (data structure design)

My question is about design and possible suggestions for the following scenario:
I am writing a 3d visualizer. For my renderable objects I would like to store the minimum data possible (so quaternions are naturally nice for rotation).
At some point I must extract a Matrix for rendering which requires computation and temporary storage on every frame update (even for objects that do not change spatially).
Given that many objects remain static and don't need to be rotated locally would it make sense to store the matrix instead and thereby avoid the computation for each object each frame? Is there any best practice approach to this perhaps from a game engine design point of view?
I am currently a bit torn between storing the two extremes of either position+quaternion or 4x3/4x4 matrix. Looking at openframeworks (not necessarily trying to achieve the same goal as me), they seem to do a hybrid where they store a quaternion AND a matrix (matrix always reflects the quaternion) so its always ready when needed but needs to be updated along with every change to the quaternion.
More compact storage require 3 scalars, so Euler Angels or Exponential Maps (Rodrigues) can be used. Quaternions is good compromise between conversion to matrix speed and compactness.
From design point of view , there is a good rule "make all design decisions as LATE as possible". In your case, just incapsulate (isolate) the rotation (transformation) representation, to be able in the future, to change the physical storage of data in different states (file, memory, rendering and more). Also it enables different platform optimization, keep data in GPU or CPU and more.
Been there.
First: keep in mind the omnipresent struggle of time against space (in computer science processing time against memory requirements)
You said that want to keep minimum information possible at first (space), and next talked about some temporary matrix reflecting the quartenions, which is more of a time worry.
If you accept a tip, I would go for the matrices. They are generally performance wise standard for 3D graphics and it's size becomes easily irrelevant next to the object data itself.
Just to have and idea: in most GPUs transforming an vector for the identity (no change) is actually faster then checking if it needs transformation and then doing nothing.
As for engines, I can't think of one that does not apply the transformations for every vertex every frame. Even if the objects keep in place, they position has to go through projection and view matrices.
(does this answer? Maybe I got you wrong)

Runtime vertex generation

Is it possible to create an infinite world, where the world is generated using an algorithms? Does XNA support vertex loading during runtime?
All three questions can be answered with "yes":
Infinite World: You can simulate an infinite world by generating only the currently "visible" world objects. This technique is used even for finite but relatively huge worlds (like in WoW, GTA etc.).
Generated World: Dependent on the given requirements, you may have to ensure that individual parts of the (apparently) finite world are always generated the same way resulting in identical object/vertex constellations. But, maybe not: Worlds "exist" that are not always identical in same places, like in "Die unendliche Geschichte" by Michael Ende.
Vertex Generation: Yes, they can! And they are quite often generated during runtime even for "small worlds" or just single model animations as some animation techniques are based on dynamic vertex generation during runtime for every single frame.

Finding patterns in Puzzle games

I was wondering, which are the most commonly used algorithms applied to finding patterns in puzzle games conformed by grids of cells.
I know that depends of many factors, like the kind of patterns You want to detect, or the rules of the game...but I wanted to know which are the most commonly used algorithms in that kind of problems...
For example, games like columns, bejeweled, even tetris.
I also want to know if detecting patterns by "brute force" ( like , scanning all the grid trying to find three adyacent cells of the same color ) is significantly worst that using particular algorithms in very small grids, like 4 X 4 for example ( and again, I know that depends of the kind of game and rules ...)
Which structures are commonly used in this kind of games ?
It's always domain-dependent. But there's also two situations where you'd do these kinds of searches. Ones situation is after a move (a change to the game field made by the player), and the other would be if/when the whole board has changed.
In Tetris, you wouldn't need to scan the whole board after a piece is dropped. You'd just have to search the rows the piece is touching.
In a match-3 games like Bejeweled, where you're swapping two adjacent pieces at a time, you'd first run a localized search in each direction around each square that changed, to see if any pieces have triggered. Then, if they have, the game will dump some new, random pieces onto the board. Now, you could run the same localized search around each square that's changed, but that might involve a lot of if statements and might actually be slower to just scanning the whole board from top left to bottom right. It depends on your implementation and would require profiling.
As Adrian says, a simple 2D array suffices. Often, though, you may add a "border" of pixels around this array, to simplify the searching-for-patterns aspect. Without a border, you'd have to have if statements along the edge squares that says "well, if you're in the top row, don't search up (and walk off the array)". With a border around it, you can safely just search through everything: saving yourself if statements, saving yourself branching, saving yourself pipeline issues, searching faster.
To Jon: these kinds of things really do matter in high-performance settings, even on modern machines, if you're making a search algorithm to play/solve the game. If you are, you want your underlying simulation to run as quickly as possible in order to search as deep as possible in the fewest cycles.
Regarding algorithms: It certainly depends on the game. For example for tetris, you'd only have to scan each row if it has the same color. I can't even think of something that would not equal the brute force approach in this case. But for most casual games brute force should be perfectly fine. Pattern recognition should be negligible in comparison to graphics and sound processing.
Regarding structures: A simple 2D-Array should suffice for representing the board.
Given the average computer speed these days, if it's real-time as the user is playing the game, it probably won't matter (EDIT: for very small game boards only). Certainly, it would depend on the complexity of the game logic, but also how fast the code is going to run on the target machine (i.e., is this a JavaScript web page game, or a Windows app written in C++).
If this is for something like simulating gameplay strategies, then use an algorithm that's more efficient.
A more efficient strategy could involve keeping track of incremental changes to the game board, instead of re-scanning the whole board every time.

How to subdivide a 2d game world for better collision detection

I'm developing a game which features a sizeable square 2d playing area. The gaming area is tileless with bounded sides (no wrapping around). I am trying to figure out how I can best divide up this world to increase the performance of collision detection. Rather than checking each entity for collision with all other entities I want to only check nearby entities for collision and obstacle avoidance.
I have a few special concerns for this game world...
I want to be able to be able to use a large number of entities in the game world at once. However, a % of entities won't collide with entities of the same type. For example projectiles won't collide with other projectiles.
I want to be able to use a large range of entity sizes. I want there to be a very large size difference between the smallest entities and the largest.
There are very few static or non-moving entities in the game world.
I'm interested in using something similar to what's described in the answer here: Quadtree vs Red-Black tree for a game in C++?
My concern is how well will a tree subdivision of the world be able to handle large size differences in entities? To divide the world up enough for the smaller entities the larger ones will need to occupy a large number of regions and I'm concerned about how that will affect the performance of the system.
My other major concern is how to properly keep the list of occupied areas up to date. Since there's a lot of moving entities, and some very large ones, it seems like dividing the world up will create a significant amount of overhead for keeping track of which entities occupy which regions.
I'm mostly looking for any good algorithms or ideas that will help reduce the number collision detection and obstacle avoidance calculations.
If I were you I'd start off by implementing a simple BSP (binary space partition) tree. Since you are working in 2D, bound box checks are really fast. You basically need three classes: CBspTree, CBspNode and CBspCut (not really needed)
CBspTree has one root node instance of class CBspNode
CBspNode has an instance of CBspCut
CBspCut symbolize how you cut a set in two disjoint sets. This can neatly be solved by introducing polymorphism (e.g. CBspCutX or CBspCutY or some other cutting line). CBspCut also has two CBspNode
The interface towards the divided world will be through the tree class and it can be a really good idea to create one more layer on top of that, in case you would like to replace the BSP solution with e.g. a quad tree. Once you're getting the hang of it. But in my experience, a BSP will do just fine.
There are different strategies of how to store your items in the tree. What I mean by that is that you can choose to have e.g. some kind of container in each node that contains references to the objects occuping that area. This means though (as you are asking yourself) that large items will occupy many leaves, i.e. there will be many references to large objects and very small items will show up at single leaves.
In my experience this doesn't have that large impact. Of course it matters, but you'd have to do some testing to check if it's really an issue or not. You would be able to get around this by simply leaving those items at branched nodes in the tree, i.e. you will not store them on "leaf level". This means you will find those objects quick while traversing down the tree.
When it comes to your first question. If you only are going to use this subdivision for collision testing and nothing else, I suggest that things that can never collide never are inserted into the tree. A missile for example as you say, can't collide with another missile. Which would mean that you dont even have to store the missile in the tree.
However, you might want to use the bsp for other things as well, you didn't specify that but keep that in mind (for picking objects with e.g. the mouse). Otherwise I propose that you store everything in the bsp, and resolve the collision later on. Just ask the bsp of a list of objects in a certain area to get a limited set of possible collision candidates and perform the check after that (assuming objects know what they can collide with, or some other external mechanism).
If you want to speed up things, you also need to take care of merge and split, i.e. when things are removed from the tree, a lot of nodes will become empty or the number of items below some node level will decrease below some merge threshold. Then you want to merge two subtrees into one node containing all items. Splitting happens when you insert items into the world. So when the number of items exceed some splitting threshold you introduce a new cut, which splits the world in two. These merge and split thresholds should be two constants that you can use to tune the efficiency of the tree.
Merge and split are mainly used to keep the tree balanced and to make sure that it works as efficient as it can according to its specifications. This is really what you need to worry about. Moving things from one location and thus updating the tree is imo fast. But when it comes to merging and splitting it might become expensive if you do it too often.
This can be avoided by introducing some kind of lazy merge and split system, i.e. you have some kind of dirty flagging or modify count. Batch up all operations that can be batched, i.e. moving 10 objects and inserting 5 might be one batch. Once that batch of operations is finished, you check if the tree is dirty and then you do the needed merge and/or split operations.
Post some comments if you want me to explain further.
Cheers !
Edit
There are many things that can be optimized in the tree. But as you know, premature optimization is the root to all evil. So start off simple. For example, you might create some generic callback system that you can use while traversing the tree. This way you dont have to query the tree to get a list of objects that matched the bound box "question", instead you can just traverse down the tree and execute that call back each time you hit something. "If this bound box I'm providing intersects you, then execute this callback with these parameters"
You most definitely want to check this list of collision detection resources from gamedev.net out. It's full of resources with game development conventions.
For other than collision detection only, check their entire list of articles and resources.
My concern is how well will a tree
subdivision of the world be able to
handle large size differences in
entities? To divide the world up
enough for the smaller entities the
larger ones will need to occupy a
large number of regions and I'm
concerned about how that will affect
the performance of the system.
Use a quad tree. For objects that exist in multiple areas you have a few options:
Store the object in both branches, all the way down. Everything ends up in leaf nodes but you may end up with a significant number of extra pointers. May be appropriate for static things.
Split the object on the zone border and insert each part in their respective locations. Creates a lot of pain and isn't well defined for a lot of objects.
Store the object at the lowest point in the tree you can. Sets of objects now exist in leaf and non-leaf nodes, but each object has one pointer to it in the tree. Probably best for objects that are going to move.
By the way, the reason you're using a quad tree is because it's really really easy to work with. You don't have any heuristic based creation like you might with some BSP implementations. It's simple and it gets the job done.
My other major concern is how to
properly keep the list of occupied
areas up to date. Since there's a lot
of moving entities, and some very
large ones, it seems like dividing the
world up will create a significant
amount of overhead for keeping track
of which entities occupy which
regions.
There will be overhead to keeping your entities in the correct spots in the tree every time they move, yes, and it can be significant. But the whole point is that you're doing much much less work in your collision code. Even though you're adding some overhead with the tree traversal and update it should be much smaller than the overhead you just removed by using the tree at all.
Obviously depending on the number of objects, size of game world, etc etc the trade off might not be worth it. Usually it turns out to be a win, but it's hard to know without doing it.
There are lots of approaches. I'd recommend settings some specific goals (e.g., x collision tests per second with a ratio of y between smallest to largest entities), and do some prototyping to find the simplest approach that achieves those goals. You might be surprised how little work you have to do to get what you need. (Or it might be a ton of work, depending on your particulars.)
Many acceleration structures (e.g., a good BSP) can take a while to set up and thus are generally inappropriate for rapid animation.
There's a lot of literature out there on this topic, so spend some time searching and researching to come up with a list candidate approaches. Mock them up and profile.
I'd be tempted just to overlay a coarse grid over the play area to form a 2D hash. If the grid is at least the size of the largest entity then you only ever have 9 grid squares to check for collisions and it's a lot simpler than managing quad-trees or arbitrary BSP trees. The overhead of determining which coarse grid square you're in is typically just 2 arithmetic operations and when a change is detected the grid just has to remove one reference/ID/pointer from one square's list and add the same to another square.
Further gains can be had from keeping the projectiles out of the grid/tree/etc lookup system - since you can quickly determine where the projectile would be in the grid, you know which grid squares to query for potential collidees. If you check collisions against the environment for each projectile in turn, there's no need for the other entities to then check for collisions against the projectiles in reverse.

Resources