I have this binary tree which is supposed to be sorted, with each node having values from [0,1], so 0.5 is a good root node to keep it balanced.
But as I sort, I get two long legs with no further branches..I know I have seen this before, but I dont remember how to do this right.
Like I said, the problem is it starts looking like a linked list instead of a tree and thats not what I want. Because I want to insert/delete in O(log(n)).
If you implement either an AVL tree orca red black trees, the algorithm will stay balanced with no need to add any seed nodes. The guarantee on AVL trees is that no branch is more than one node longer than any other branch. red black trees have a slightly less robust guarantee, but it is still good.
There are several structures and related algorithms that provide self-balancing trees -- or more generally -- sorted lists.
Among binary trees there are AVL trees and red-black trees. But in my own experience -- when having to deal with millions of values -- a B+tree has been an efficient option. It has some interesting features:
easy to balance: no rotations, but splits and joins.
memory is allocated in blocks -- ready for storing more than one value -- so that the number of allocations is much less than the number of stored values
you can play with the branching factor to see which one gives best performance
when the bottom layer is linked as a linked list, you have easy access to the ordered sequence of values
Looks like AVL or Red/Black trees is answer to keep things balanced. Additionally, since I am building a BST for sorted values between [0,1], one option might be to start with a relatively complete tree? like so:
Node(0.875)
/
Node(0.75)
/ \
/ Node(0.625)
RootNode(0.5)
\ Node(0.375)
\ /
Node(0.25)
\
Node(0.125)
and then adding nodes using that base tree, which will make everything cleaner, to expand even further:
/ Node(0.9375)
Node(0.875)
/ \ Node(0.8125)
Node(0.75)
/ \ / Node(0.6875)
/ Node(0.625)
/ \ Node(0.5625)
/
RootNode(0.5) / Node(0.4375)
\ Node(0.375)
\ / \ Node(0.3125)
Node(0.25)
\ / Node(0.1875)
Node(0.125)
\ Node(0.625)
Using the above as a seed, will keep things relatively balanced, out of the gate.
Related
Lots of tutorials focus on implementation of Binary Search Tree and it is easier for search operations. Are there applications or circumstances where implementing a Simple Binary Tree is better than BST? Or is it just taught as an introductory concept for trees?
You use a binary tree (rather than a binary search tree) when you have a structure that requires a parent and up to two children. For example, consider a tree to represent mathematical expressions. The expression (a+b)*c becomes:
*
/ \
+ c
/ \
a b
The Paring heap is a data structure that is logically a general tree (i.e. no restriction on the number of children a node can have), but it is often implemented using a left-child right-sibling binary tree. The LCRS binary tree is often more efficient and easier to work with than a general tree.
The binary heap also is a binary tree, but not a binary search tree.
The old guessing game where the player answers a bunch of yes/no questions in order to arrive at an answer, is another example of a binary tree. In the tree below, the left child is the "No" answer, and the right child is "Yes" answer
Is it an animal?
/ \
Is it a plant? Is is a mammal?
/ \
A reptile? A dog?
You can imagine an arbitrarily deep tree with questions at each level.
Those are just a few examples. I've found binary trees useful in lots of different situations.
I recently heard about ternary search in which we divide an array into 3 parts and compare. Here there will be two comparisons but it reduces the array to n/3. Why don't people use this much?
Actually, people do use k-ary trees for arbitrary k.
This is, however, a tradeoff.
To find an element in a k-ary tree, you need around k*ln(N)/ln(k) operations (remember the change-of-base formula). The larger your k is, the more overall operations you need.
The logical extension of what you are saying is "why don't people use an N-ary tree for N data elements?". Which, of course, would be an array.
A ternary search will still give you the same asymptotic complexity O(log N) search time, and adds complexity to the implementation.
The same argument can be said for why you would not want a quad search or any other higher order.
Searching 1 billion (a US billion - 1,000,000,000) sorted items would take an average of about 15 compares with binary search and about 9 compares with a ternary search - not a huge advantage. And note that each 'ternary compare' might involve 2 actual comparisons.
Wow. The top voted answers miss the boat on this one, I think.
Your CPU doesn't support ternary logic as a single operation; it breaks ternary logic into several steps of binary logic. The most optimal code for the CPU is binary logic. If chips were common that supported ternary logic as a single operation, you'd be right.
B-Trees can have multiple branches at each node; a order-3 B-tree is ternary logic. Each step down the tree will take two comparisons instead of one, and this will probably cause it to be slower in CPU time.
B-Trees, however, are pretty common. If you assume that every node in the tree will be stored somewhere separately on disk, you're going to spend most of your time reading from disk... and the CPU won't be a bottleneck, but the disk will be. So you take a B-tree with 100,000 children per node, or whatever else will barely fit into one block of memory. B-trees with that kind of branching factor would rarely be more than three nodes high, and you'd only have three disk reads - three stops at a bottleneck - to search an enormous, enormous dataset.
Reviewing:
Ternary trees aren't supported by hardware, so they run less quickly.
B-tress with orders much, much, much higher than 3 are common for disk-optimization of large datasets; once you've gone past 2, go higher than 3.
The only way a ternary search can be faster than a binary search is if a 3-way partition determination can be done for less than about 1.55 times the cost of a 2-way comparison. If the items are stored in a sorted array, the 3-way determination will on average be 1.66 times as expensive as a 2-way determination. If information is stored in a tree, however, the cost to fetch information is high relative to the cost of actually comparing, and cache locality means the cost of randomly fetching a pair of related data is not much worse than the cost of fetching a single datum, a ternary or n-way tree may improve efficiency greatly.
What makes you think Ternary search should be faster?
Average number of comparisons:
in ternary search = ((1/3)*1 + (2/3)*2) * ln(n)/ln(3) ~ 1.517*ln(n)
in binary search = 1 * ln(n)/ln(2) ~ 1.443*ln(n).
Worst number of comparisons:
in ternary search = 2 * ln(n)/ln(3) ~ 1.820*ln(n)
in binary search = 1 * ln(n)/ln(2) ~ 1.443*ln(n).
So it looks like ternary search is worse.
Also, note that this sequence generalizes to linear search if we go on
Binary search
Ternary search
...
...
n-ary search ≡ linear search
So, in an n-ary search, we will have "one only COMPARE" which might take upto n actual comparisons.
"Terinary" (ternary?) search is more efficient in the best case, which would involve searching for the first element (or perhaps the last, depending on which comparison you do first). For elements farther from the end you're checking first, while two comparisons would narrow the array by 2/3 each time, the same two comparisons with binary search would narrow the search space by 3/4.
Add to that, binary search is simpler. You just compare and get one half or the other, rather than compare, if less than get the first third, else compare, if less than get the second third, else get the last third.
Ternary search can be effectively used on parallel architectures - FPGAs and ASICs. For example if internal FPGA memory required for search is less than half of the FPGA resource, you can make a duplicate memory block. This would allow to simultaneously access two different memory addresses and do all comparisons in a single clock cycle. This is one of the reasons why 100MHz FPGA can sometimes outperform the 4GHz CPU :)
Here's some random experimental evidence that I haven't vetted at all showing that it's slower than binary search.
Almost all textbooks and websites on binary search trees do not really talk about binary trees! They show you ternary search trees! True binary trees store data in their leaves not internal nodes (except for keys to navigate). Some call these leaf trees and make the distinction between node trees shown in textbooks:
J. Nievergelt, C.-K. Wong: Upper Bounds for the Total Path Length of Binary Trees,
Journal ACM 20 (1973) 1–6.
The following about this is from Peter Brass's book on data structures.
2.1 Two Models of Search Trees
In the outline just given, we supressed an important point that at first seems
trivial, but indeed it leads to two different models of search trees, either of
which can be combined with much of the following material, but one of which
is strongly preferable.
If we compare in each node the query key with the key contained in the
node and follow the left branch if the query key is smaller and the right branch
if the query key is larger, then what happens if they are equal? The two models
of search trees are as follows:
Take left branch if query key is smaller than node key; otherwise take the
right branch, until you reach a leaf of the tree. The keys in the interior node
of the tree are only for comparison; all the objects are in the leaves.
Take left branch if query key is smaller than node key; take the right branch
if the query key is larger than the node key; and take the object contained
in the node if they are equal.
This minor point has a number of consequences:
{ In model 1, the underlying tree is a binary tree, whereas in model 2, each
tree node is really a ternary node with a special middle neighbor.
{ In model 1, each interior node has a left and a right subtree (each possibly a
leaf node of the tree), whereas in model 2, we have to allow incomplete
nodes, where left or right subtree might be missing, and only the
comparison object and key are guaranteed to exist.
So the structure of a search tree of model 1 is more regular than that of a tree
of model 2; this is, at least for the implementation, a clear advantage.
{ In model 1, traversing an interior node requires only one comparison,
whereas in model 2, we need two comparisons to check the three
possibilities.
Indeed, trees of the same height in models 1 and 2 contain at most approximately
the same number of objects, but one needs twice as many comparisons in model
2 to reach the deepest objects of the tree. Of course, in model 2, there are also
some objects that are reached much earlier; the object in the root is found
with only two comparisons, but almost all objects are on or near the deepest
level.
Theorem. A tree of height h and model 1 contains at most 2^h objects.
A tree of height h and model 2 contains at most 2^h+1 − 1 objects.
This is easily seen because the tree of height h has as left and right subtrees a
tree of height at most h − 1 each, and in model 2 one additional object between
them.
{ In model 1, keys in interior nodes serve only for comparisons and may
reappear in the leaves for the identification of the objects. In model 2, each
key appears only once, together with its object.
It is even possible in model 1 that there are keys used for comparison that
do not belong to any object, for example, if the object has been deleted. By
conceptually separating these functions of comparison and identification, this
is not surprising, and in later structures we might even need to define artificial
tests not corresponding to any object, just to get a good division of the search
space. All keys used for comparison are necessarily distinct because in a model
1 tree, each interior node has nonempty left and right subtrees. So each key
occurs at most twice, once as comparison key and once as identification key in
the leaf.
Model 2 became the preferred textbook version because in most textbooks
the distinction between object and its key is not made: the key is the object.
Then it becomes unnatural to duplicate the key in the tree structure. But in
all real applications, the distinction between key and object is quite important.
One almost never wishes to keep track of just a set of numbers; the numbers
are normally associated with some further information, which is often much
larger than the key itself.
You may have heard ternary search being used in those riddles that involve weighing things on scales. Those scales can return 3 answers: left is lighter, both are the same, or left is heavier. So in a ternary search, it only takes 1 comparison.
However, computers use boolean logic, which only has 2 answers. To do the ternary search, you'd actually have to do 2 comparisons instead of 1.
I guess there are some cases where this is still faster as earlier posters mentioned, but you can see that ternary search isn't always better, and it's more confusing and less natural to implement on a computer.
Theoretically the minimum of k/ln(k) is achieved at e and since 3 is closer to e than 2 it requires less comparisons. You can check that 3/ln(3) = 2.73.. and 2/ln(2) = 2.88.. The reason why binary search could be faster is that the code for it will have less branches and will run faster on modern CPUs.
I have just posted a blog about the ternary search and I have shown some results. I have also provided some initial level implementations on my git repo I totally agree with every one about the theory part of the ternary search but why not give it a try? As per the implementation that part is easy enough if you have three years of coding experience.
I found that if you have huge data set and you need to search it many times ternary search has an advantage.
If you think you can do better with a ternary search go for it.
Although you get the same big-O complexity (ln n) in both search trees, the difference is in the constants. You have to do more comparisons for a ternary search tree at each level. So the difference boils down to k/ln(k) for a k-ary search tree. This has a minimum value at e=2.7 and k=2 provides the optimal result.
both recursion as well as vector based iterative process can be used for DFS tree(b-tree) traversal. In both the cases, we need extra space either in the stack while recursive calls or in a vector. Does any technique exists which doesn't need space or needs min space?
If you are searching a binary tree, you can represent each path taken as a pattern of bits. Accordingly, you can keep searching downwards from a root point, and keep track of your progress by twiddling the bits in a binary word. You'll need one bit for each level.
e.g.
A
/ \
B C
/ \ \
D E F
If we start searching at A, the search specified by ABD is 00 (left - left); the next is 01, corresponding to left-right, or ABE; 10 is A-C-No child; and 11 is ACF.
Notice that the least significant bit indicates the direction to turn at the end of the traversal (that is, it selects the leaf); if the bit sequence is read the other way, this method would specify a breadth-first traversal.
You keep revisiting the same nodes, as a consequence of storing less information.
Note that this amounts to a linear scan of your data, thus destroying the benefits of having a tree. If you are too space constrained to be able to afford a stack, I suggest that you use a pre-allocated vector. If you keep that sorted, you can do things like binary searches, which will be rather more efficient than this.
Needed space for traversing tree can be done at worst in log(N) space. If you have nodes whit single branch it can be done using O(1) space/memory performance. But log(N) performance is really small. If you imagine having 2^300 nodes (can not fit in this universe), you have space requirements for searching that is like 300 and can fit in few kB of RAM.
Suppose I have a binary search tree which, initially, satisfies all of the red-black conditions and contains one node for every integer s in some set S. Next, I want to a new node; say a (which is not in S).
Is the result of this addition, after rebalancing, unique?
Put another way: is there only one way to rebalance a red-black tree after inserting a node?
I believe that they are not unique, although I offer no proof (and little confidence). I'm just wondering if someone more knowledgeable than myself might be so kind as to edify me?
They are not unique.
A simple proof would be to make a trivial algorithmic change, like check that we can change the root's colour, and provide a case where that is still valid, for example:
1-B
/ \
0-R 2-R
add(3):
1-B
/ \
0-B 2-B
\
3-R
But the new algorithm could quite as easily yield
1-R
/ \
0-B 2-B
\
3-R
The root is a different colour but of course the trees are both still valid RB trees.
This may seem a little trivial, but you can extend the idea (if you want a proof that is less trivial) to check for more than just the root. You could check O(1) levels deep to make a non-trivial but valid change, which would generate two different algorithms with the same running times.
For example, check that the first 10 rows are full and black, and change the odd ones to red, would yield an additional constant work (i.e. O(1)), and a new algorithm.
I should note that this is simply a proof of non-uniqueness, not a bound on the amount of non-uniqueness. I.e. something trivial like this is enough to prove the point, but it leaves the door open for RB algorithms that differ in more fundamental ways.
No there are mutliple alorithms.
Let start with this 2 propositions:
The number of red-black trees with 4 internal nodes is 3
The number of red-black trees with 5 internal nodes is 8
Now, imagine there is a unique alorithm to add a node to a 4 internal node red-black Tree. Then there should be only 3 red-black Trees with 5 internal nodes, since the algorithm leads to one single result.
That's absurd as the number of red-black trees with 5 internal nodes is 8.
(cf PIGEONHOLE PRINCIPLE )
Therefore there are multiple "red-black" algorithm
Hope I understood what you meant.
I recently heard about ternary search in which we divide an array into 3 parts and compare. Here there will be two comparisons but it reduces the array to n/3. Why don't people use this much?
Actually, people do use k-ary trees for arbitrary k.
This is, however, a tradeoff.
To find an element in a k-ary tree, you need around k*ln(N)/ln(k) operations (remember the change-of-base formula). The larger your k is, the more overall operations you need.
The logical extension of what you are saying is "why don't people use an N-ary tree for N data elements?". Which, of course, would be an array.
A ternary search will still give you the same asymptotic complexity O(log N) search time, and adds complexity to the implementation.
The same argument can be said for why you would not want a quad search or any other higher order.
Searching 1 billion (a US billion - 1,000,000,000) sorted items would take an average of about 15 compares with binary search and about 9 compares with a ternary search - not a huge advantage. And note that each 'ternary compare' might involve 2 actual comparisons.
Wow. The top voted answers miss the boat on this one, I think.
Your CPU doesn't support ternary logic as a single operation; it breaks ternary logic into several steps of binary logic. The most optimal code for the CPU is binary logic. If chips were common that supported ternary logic as a single operation, you'd be right.
B-Trees can have multiple branches at each node; a order-3 B-tree is ternary logic. Each step down the tree will take two comparisons instead of one, and this will probably cause it to be slower in CPU time.
B-Trees, however, are pretty common. If you assume that every node in the tree will be stored somewhere separately on disk, you're going to spend most of your time reading from disk... and the CPU won't be a bottleneck, but the disk will be. So you take a B-tree with 100,000 children per node, or whatever else will barely fit into one block of memory. B-trees with that kind of branching factor would rarely be more than three nodes high, and you'd only have three disk reads - three stops at a bottleneck - to search an enormous, enormous dataset.
Reviewing:
Ternary trees aren't supported by hardware, so they run less quickly.
B-tress with orders much, much, much higher than 3 are common for disk-optimization of large datasets; once you've gone past 2, go higher than 3.
The only way a ternary search can be faster than a binary search is if a 3-way partition determination can be done for less than about 1.55 times the cost of a 2-way comparison. If the items are stored in a sorted array, the 3-way determination will on average be 1.66 times as expensive as a 2-way determination. If information is stored in a tree, however, the cost to fetch information is high relative to the cost of actually comparing, and cache locality means the cost of randomly fetching a pair of related data is not much worse than the cost of fetching a single datum, a ternary or n-way tree may improve efficiency greatly.
What makes you think Ternary search should be faster?
Average number of comparisons:
in ternary search = ((1/3)*1 + (2/3)*2) * ln(n)/ln(3) ~ 1.517*ln(n)
in binary search = 1 * ln(n)/ln(2) ~ 1.443*ln(n).
Worst number of comparisons:
in ternary search = 2 * ln(n)/ln(3) ~ 1.820*ln(n)
in binary search = 1 * ln(n)/ln(2) ~ 1.443*ln(n).
So it looks like ternary search is worse.
Also, note that this sequence generalizes to linear search if we go on
Binary search
Ternary search
...
...
n-ary search ≡ linear search
So, in an n-ary search, we will have "one only COMPARE" which might take upto n actual comparisons.
"Terinary" (ternary?) search is more efficient in the best case, which would involve searching for the first element (or perhaps the last, depending on which comparison you do first). For elements farther from the end you're checking first, while two comparisons would narrow the array by 2/3 each time, the same two comparisons with binary search would narrow the search space by 3/4.
Add to that, binary search is simpler. You just compare and get one half or the other, rather than compare, if less than get the first third, else compare, if less than get the second third, else get the last third.
Ternary search can be effectively used on parallel architectures - FPGAs and ASICs. For example if internal FPGA memory required for search is less than half of the FPGA resource, you can make a duplicate memory block. This would allow to simultaneously access two different memory addresses and do all comparisons in a single clock cycle. This is one of the reasons why 100MHz FPGA can sometimes outperform the 4GHz CPU :)
Here's some random experimental evidence that I haven't vetted at all showing that it's slower than binary search.
Almost all textbooks and websites on binary search trees do not really talk about binary trees! They show you ternary search trees! True binary trees store data in their leaves not internal nodes (except for keys to navigate). Some call these leaf trees and make the distinction between node trees shown in textbooks:
J. Nievergelt, C.-K. Wong: Upper Bounds for the Total Path Length of Binary Trees,
Journal ACM 20 (1973) 1–6.
The following about this is from Peter Brass's book on data structures.
2.1 Two Models of Search Trees
In the outline just given, we supressed an important point that at first seems
trivial, but indeed it leads to two different models of search trees, either of
which can be combined with much of the following material, but one of which
is strongly preferable.
If we compare in each node the query key with the key contained in the
node and follow the left branch if the query key is smaller and the right branch
if the query key is larger, then what happens if they are equal? The two models
of search trees are as follows:
Take left branch if query key is smaller than node key; otherwise take the
right branch, until you reach a leaf of the tree. The keys in the interior node
of the tree are only for comparison; all the objects are in the leaves.
Take left branch if query key is smaller than node key; take the right branch
if the query key is larger than the node key; and take the object contained
in the node if they are equal.
This minor point has a number of consequences:
{ In model 1, the underlying tree is a binary tree, whereas in model 2, each
tree node is really a ternary node with a special middle neighbor.
{ In model 1, each interior node has a left and a right subtree (each possibly a
leaf node of the tree), whereas in model 2, we have to allow incomplete
nodes, where left or right subtree might be missing, and only the
comparison object and key are guaranteed to exist.
So the structure of a search tree of model 1 is more regular than that of a tree
of model 2; this is, at least for the implementation, a clear advantage.
{ In model 1, traversing an interior node requires only one comparison,
whereas in model 2, we need two comparisons to check the three
possibilities.
Indeed, trees of the same height in models 1 and 2 contain at most approximately
the same number of objects, but one needs twice as many comparisons in model
2 to reach the deepest objects of the tree. Of course, in model 2, there are also
some objects that are reached much earlier; the object in the root is found
with only two comparisons, but almost all objects are on or near the deepest
level.
Theorem. A tree of height h and model 1 contains at most 2^h objects.
A tree of height h and model 2 contains at most 2^h+1 − 1 objects.
This is easily seen because the tree of height h has as left and right subtrees a
tree of height at most h − 1 each, and in model 2 one additional object between
them.
{ In model 1, keys in interior nodes serve only for comparisons and may
reappear in the leaves for the identification of the objects. In model 2, each
key appears only once, together with its object.
It is even possible in model 1 that there are keys used for comparison that
do not belong to any object, for example, if the object has been deleted. By
conceptually separating these functions of comparison and identification, this
is not surprising, and in later structures we might even need to define artificial
tests not corresponding to any object, just to get a good division of the search
space. All keys used for comparison are necessarily distinct because in a model
1 tree, each interior node has nonempty left and right subtrees. So each key
occurs at most twice, once as comparison key and once as identification key in
the leaf.
Model 2 became the preferred textbook version because in most textbooks
the distinction between object and its key is not made: the key is the object.
Then it becomes unnatural to duplicate the key in the tree structure. But in
all real applications, the distinction between key and object is quite important.
One almost never wishes to keep track of just a set of numbers; the numbers
are normally associated with some further information, which is often much
larger than the key itself.
You may have heard ternary search being used in those riddles that involve weighing things on scales. Those scales can return 3 answers: left is lighter, both are the same, or left is heavier. So in a ternary search, it only takes 1 comparison.
However, computers use boolean logic, which only has 2 answers. To do the ternary search, you'd actually have to do 2 comparisons instead of 1.
I guess there are some cases where this is still faster as earlier posters mentioned, but you can see that ternary search isn't always better, and it's more confusing and less natural to implement on a computer.
Theoretically the minimum of k/ln(k) is achieved at e and since 3 is closer to e than 2 it requires less comparisons. You can check that 3/ln(3) = 2.73.. and 2/ln(2) = 2.88.. The reason why binary search could be faster is that the code for it will have less branches and will run faster on modern CPUs.
I have just posted a blog about the ternary search and I have shown some results. I have also provided some initial level implementations on my git repo I totally agree with every one about the theory part of the ternary search but why not give it a try? As per the implementation that part is easy enough if you have three years of coding experience.
I found that if you have huge data set and you need to search it many times ternary search has an advantage.
If you think you can do better with a ternary search go for it.
Although you get the same big-O complexity (ln n) in both search trees, the difference is in the constants. You have to do more comparisons for a ternary search tree at each level. So the difference boils down to k/ln(k) for a k-ary search tree. This has a minimum value at e=2.7 and k=2 provides the optimal result.